spark RDD相关总结(一)

Value类型

map(func)案例

  1. 作用:返回一个新的RDD,该RDD由每一个输入元素经过func函数转换后组成
  2. 需求:创建一个1-10数组的RDD,将所有元素2形成新的RDD
    (1)创建
    scala> var source = sc.parallelize(1 to 10)
    source: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[8] at parallelize at :24
    (2)打印
    scala> source.collect()
    res7: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
    (3)将所有元素
    2
    scala> val mapadd = source.map(_ * 2)
    mapadd: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[9] at map at :26
    (4)打印最终结果
    scala> mapadd.collect()
    res8: Array[Int] = Array(2, 4, 6, 8, 10, 12, 14, 16, 18, 20)

mapPartitions(func) 案例

  1. 作用:类似于map,但独立地在RDD的每一个分片上运行,因此在类型为T的RDD上运行时,func的函数类型必须是Iterator[T] => Iterator[U]。假设有N个元素,有M个分区,那么map的函数的将被调用N次,而mapPartitions被调用M次,一个函数一次处理所有分区。
  2. 需求:创建一个RDD,使每个元素2组成新的RDD
    (1)创建一个RDD
    scala> val rdd = sc.parallelize(Array(1,2,3,4))
    rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[4] at parallelize at :24
    (2)使每个元素
    2组成新的RDD
    scala> rdd.mapPartitions(x=>x.map(_*2))
    res3: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[6] at mapPartitions at :27
    (3)打印新的RDD
    scala> res3.collect
    res4: Array[Int] = Array(2, 4, 6, 8)

mapPartitionsWithIndex(func) 案例

  1. 作用:类似于mapPartitions,但func带有一个整数参数表示分片的索引值,因此在类型为T的RDD上运行时,func的函数类型必须是(Int, Interator[T]) => Iterator[U];
  2. 需求:创建一个RDD,使每个元素跟所在分区形成一个元组组成一个新的RDD
    (1)创建一个RDD
    scala> val rdd = sc.parallelize(Array(1,2,3,4))
    rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[4] at parallelize at :24
    (2)使每个元素跟所在分区形成一个元组组成一个新的RDD
    scala> val indexRdd = rdd.mapPartitionsWithIndex((index,items)=>(items.map((index,_))))
    indexRdd: org.apache.spark.rdd.RDD[(Int, Int)] = MapPartitionsRDD[5] at mapPartitionsWithIndex at :26
    (3)打印新的RDD
    scala> indexRdd.collect
    res2: Array[(Int, Int)] = Array((0,1), (0,2), (1,3), (1,4))

flatMap(func) 案例

  1. 作用:类似于map,但是每一个输入元素可以被映射为0或多个输出元素(所以func应该返回一个序列,而不是单一元素)
  2. 需求:创建一个元素为1-5的RDD,运用flatMap创建一个新的RDD,新的RDD为原RDD的每个元素的2倍(2,4,6,8,10)
    (1)创建
    scala> val sourceFlat = sc.parallelize(1 to 5)
    sourceFlat: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[12] at parallelize at :24
    (2)打印
    scala> sourceFlat.collect()
    res11: Array[Int] = Array(1, 2, 3, 4, 5)
    (3)根据原RDD创建新RDD(1->1,2->1,2……5->1,2,3,4,5)
    scala> val flatMap = sourceFlat.flatMap(1 to _)
    flatMap: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[13] at flatMap at :26
    (4)打印新RDD
    scala> flatMap.collect()
    res12: Array[Int] = Array(1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5)

map()和mapPartition()的区别

  1. map():每次处理一条数据。
  2. mapPartition():每次处理一个分区的数据,这个分区的数据处理完后,原RDD中分区的数据才能释放,可能导致OOM。
  3. 开发指导:当内存空间较大的时候建议使用mapPartition(),以提高处理效率。

glom案例

  1. 作用:将每一个分区形成一个数组,形成新的RDD类型时RDD[Array[T]]
  2. 需求:创建一个4个分区的RDD,并将每个分区的数据放到一个数组
    (1)创建
    scala> val rdd = sc.parallelize(1 to 16,4)
    rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[65] at parallelize at :24
    (2)将每个分区的数据放到一个数组并收集到Driver端打印
    scala> rdd.glom().collect()
    res25: Array[Array[Int]] = Array(Array(1, 2, 3, 4), Array(5, 6, 7, 8), Array(9, 10, 11, 12), Array(13, 14, 15, 16))

groupBy(func)案例

  1. 作用:分组,按照传入函数的返回值进行分组。将相同的key对应的值放入一个迭代器。
  2. 需求:创建一个RDD,按照元素模以2的值进行分组。
    (1)创建
    scala> val rdd = sc.parallelize(1 to 4)
    rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[65] at parallelize at :24
    (2)按照元素模以2的值进行分组
    scala> val group = rdd.groupBy(_%2)
    group: org.apache.spark.rdd.RDD[(Int, Iterable[Int])] = ShuffledRDD[2] at groupBy at :26
    (3)打印结果
    scala> group.collect
    res0: Array[(Int, Iterable[Int])] = Array((0,CompactBuffer(2, 4)), (1,CompactBuffer(1, 3)))

filter(func) 案例

  1. 作用:过滤。返回一个新的RDD,该RDD由经过func函数计算后返回值为true的输入元素组成。
  2. 需求:创建一个RDD(由字符串组成),过滤出一个新RDD(包含”xiao”子串)
    (1)创建
    scala> var sourceFilter = sc.parallelize(Array(“xiaoming”,“xiaojiang”,“xiaohe”,“dazhi”))
    sourceFilter: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[10] at parallelize at :24
    (2)打印
    scala> sourceFilter.collect()
    res9: Array[String] = Array(xiaoming, xiaojiang, xiaohe, dazhi)
    (3)过滤出含” xiao”子串的形成一个新的RDD
    scala> val filter = sourceFilter.filter(_.contains(“xiao”))
    filter: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[11] at filter at :26
    (4)打印新RDD
    scala> filter.collect()
    res10: Array[String] = Array(xiaoming, xiaojiang, xiaohe)

sample(withReplacement, fraction, seed) 案例

  1. 作用:以指定的随机种子随机抽样出数量为fraction的数据,withReplacement表示是抽出的数据是否放回,true为有放回的抽样,false为无放回的抽样,seed用于指定随机数生成器种子。
  2. 需求:创建一个RDD(1-10),从中选择放回和不放回抽样
    (1)创建RDD
    scala> val rdd = sc.parallelize(1 to 10)
    rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[20] at parallelize at :24
    (2)打印
    scala> rdd.collect()
    res15: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
    (3)放回抽样
    scala> var sample1 = rdd.sample(true,0.4,2)
    sample1: org.apache.spark.rdd.RDD[Int] = PartitionwiseSampledRDD[21] at sample at :26
    (4)打印放回抽样结果
    scala> sample1.collect()
    res16: Array[Int] = Array(1, 2, 2, 7, 7, 8, 9)
    (5)不放回抽样
    scala> var sample2 = rdd.sample(false,0.2,3)
    sample2: org.apache.spark.rdd.RDD[Int] = PartitionwiseSampledRDD[22] at sample at :26
    (6)打印不放回抽样结果
    scala> sample2.collect()
    res17: Array[Int] = Array(1, 9)

distinct([numTasks])) 案例

  1. 作用:对源RDD进行去重后返回一个新的RDD。默认情况下,只有8个并行任务来操作,但是可以传入一个可选的numTasks参数改变它。
  2. 需求:创建一个RDD,使用distinct()对其去重。
    (1)创建一个RDD
    scala> val distinctRdd = sc.parallelize(List(1,2,1,5,2,9,6,1))
    distinctRdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[34] at parallelize at :24
    (2)对RDD进行去重(不指定并行度)
    scala> val unionRDD = distinctRdd.distinct()
    unionRDD: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[37] at distinct at :26
    (3)打印去重后生成的新RDD
    scala> unionRDD.collect()
    res20: Array[Int] = Array(1, 9, 5, 6, 2)
    (4)对RDD(指定并行度为2)
    scala> val unionRDD = distinctRdd.distinct(2)
    unionRDD: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[40] at distinct at :26
    (5)打印去重后生成的新RDD
    scala> unionRDD.collect()
    res21: Array[Int] = Array(6, 2, 1, 9, 5)
    2.3.1.11 coalesce(numPartitions) 案例
  3. 作用:缩减分区数,用于大数据集过滤后,提高小数据集的执行效率。
  4. 需求:创建一个4个分区的RDD,对其缩减分区
    (1)创建一个RDD
    scala> val rdd = sc.parallelize(1 to 16,4)
    rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[54] at parallelize at :24
    (2)查看RDD的分区数
    scala> rdd.partitions.size
    res20: Int = 4
    (3)对RDD重新分区
    scala> val coalesceRDD = rdd.coalesce(3)
    coalesceRDD: org.apache.spark.rdd.RDD[Int] = CoalescedRDD[55] at coalesce at :26
    (4)查看新RDD的分区数
    scala> coalesceRDD.partitions.size
    res21: Int = 3

repartition(numPartitions) 案例

  1. 作用:根据分区数,重新通过网络随机洗牌所有数据。
  2. 需求:创建一个4个分区的RDD,对其重新分区
    (1)创建一个RDD
    scala> val rdd = sc.parallelize(1 to 16,4)
    rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[56] at parallelize at :24
    (2)查看RDD的分区数
    scala> rdd.partitions.size
    res22: Int = 4
    (3)对RDD重新分区
    scala> val rerdd = rdd.repartition(2)
    rerdd: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[60] at repartition at :26
    (4)查看新RDD的分区数
    scala> rerdd.partitions.size
    res23: Int = 2

coalesce和repartition的区别

  1. coalesce重新分区,可以选择是否进行shuffle过程。由参数shuffle: Boolean = false/true决定。
  2. repartition实际上是调用的coalesce,默认是进行shuffle的。源码如下:
    def repartition(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T] = withScope {
    coalesce(numPartitions, shuffle = true)
    }

sortBy(func,[ascending], [numTasks]) 案例

  1. 作用;使用func先对数据进行处理,按照处理后的数据比较结果排序,默认为正序。
  2. 需求:创建一个RDD,按照不同的规则进行排序
    (1)创建一个RDD
    scala> val rdd = sc.parallelize(List(2,1,3,4))
    rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[21] at parallelize at :24
    (2)按照自身大小排序
    scala> rdd.sortBy(x => x).collect()
    res11: Array[Int] = Array(1, 2, 3, 4)
    (3)按照与3余数的大小排序
    scala> rdd.sortBy(x => x%3).collect()
    res12: Array[Int] = Array(3, 4, 1, 2)

pipe(command, [envVars]) 案例

  1. 作用:管道,针对每个分区,都执行一个shell脚本,返回输出的RDD。
    注意:脚本需要放在Worker节点可以访问到的位置
  2. 需求:编写一个脚本,使用管道将脚本作用于RDD上。
    (1)编写一个脚本
    Shell脚本
    #!/bin/sh
    echo “AA”
    while read LINE; do
    echo “>>>”${LINE}
    done
    (2)创建一个只有一个分区的RDD
    scala> val rdd = sc.parallelize(List(“hi”,“Hello”,“how”,“are”,“you”),1)
    rdd: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[50] at parallelize at :24
    (3)将脚本作用该RDD并打印
    scala> rdd.pipe("/opt/module/spark/pipe.sh").collect()
    res18: Array[String] = Array(AA, >>>hi, >>>Hello, >>>how, >>>are, >>>you)
    (4)创建一个有两个分区的RDD
    scala> val rdd = sc.parallelize(List(“hi”,“Hello”,“how”,“are”,“you”),2)
    rdd: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[52] at parallelize at :24
    (5)将脚本作用该RDD并打印
    scala> rdd.pipe("/opt/module/spark/pipe.sh").collect()
    res19: Array[String] = Array(AA, >>>hi, >>>Hello, AA, >>>how, >>>are, >>>you)

双Value类型交互

union(otherDataset) 案例

  1. 作用:对源RDD和参数RDD求并集后返回一个新的RDD
  2. 需求:创建两个RDD,求并集
    (1)创建第一个RDD
    scala> val rdd1 = sc.parallelize(1 to 5)
    rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[23] at parallelize at :24
    (2)创建第二个RDD
    scala> val rdd2 = sc.parallelize(5 to 10)
    rdd2: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[24] at parallelize at :24
    (3)计算两个RDD的并集
    scala> val rdd3 = rdd1.union(rdd2)
    rdd3: org.apache.spark.rdd.RDD[Int] = UnionRDD[25] at union at :28
    (4)打印并集结果
    scala> rdd3.collect()
    res18: Array[Int] = Array(1, 2, 3, 4, 5, 5, 6, 7, 8, 9, 10)

subtract (otherDataset) 案例

  1. 作用:计算差的一种函数,去除两个RDD中相同的元素,不同的RDD将保留下来
  2. 需求:创建两个RDD,求第一个RDD与第二个RDD的差集
    (1)创建第一个RDD
    scala> val rdd = sc.parallelize(3 to 8)
    rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[70] at parallelize at :24
    (2)创建第二个RDD
    scala> val rdd1 = sc.parallelize(1 to 5)
    rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[71] at parallelize at :24
    (3)计算第一个RDD与第二个RDD的差集并打印
    scala> rdd.subtract(rdd1).collect()
    res27: Array[Int] = Array(8, 6, 7)

intersection(otherDataset) 案例

  1. 作用:对源RDD和参数RDD求交集后返回一个新的RDD
  2. 需求:创建两个RDD,求两个RDD的交集
    (1)创建第一个RDD
    scala> val rdd1 = sc.parallelize(1 to 7)
    rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[26] at parallelize at :24
    (2)创建第二个RDD
    scala> val rdd2 = sc.parallelize(5 to 10)
    rdd2: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[27] at parallelize at :24
    (3)计算两个RDD的交集
    scala> val rdd3 = rdd1.intersection(rdd2)
    rdd3: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[33] at intersection at :28
    (4)打印计算结果
    scala> rdd3.collect()
    res19: Array[Int] = Array(5, 6, 7)

cartesian(otherDataset) 案例

  1. 作用:笛卡尔积(尽量避免使用)
  2. 需求:创建两个RDD,计算两个RDD的笛卡尔积
    (1)创建第一个RDD
    scala> val rdd1 = sc.parallelize(1 to 3)
    rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[47] at parallelize at :24
    (2)创建第二个RDD
    scala> val rdd2 = sc.parallelize(2 to 5)
    rdd2: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[48] at parallelize at :24
    (3)计算两个RDD的笛卡尔积并打印
    scala> rdd1.cartesian(rdd2).collect()
    res17: Array[(Int, Int)] = Array((1,2), (1,3), (1,4), (1,5), (2,2), (2,3), (2,4), (2,5), (3,2), (3,3), (3,4), (3,5))

zip(otherDataset)案例

  1. 作用:将两个RDD组合成Key/Value形式的RDD,这里默认两个RDD的partition数量以及元素数量都相同,否则会抛出异常。
  2. 需求:创建两个RDD,并将两个RDD组合到一起形成一个(k,v)RDD
    (1)创建第一个RDD
    scala> val rdd1 = sc.parallelize(Array(1,2,3),3)
    rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[1] at parallelize at :24
    (2)创建第二个RDD(与1分区数相同)
    scala> val rdd2 = sc.parallelize(Array(“a”,“b”,“c”),3)
    rdd2: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[2] at parallelize at :24
    (3)第一个RDD组合第二个RDD并打印
    scala> rdd1.zip(rdd2).collect
    res1: Array[(Int, String)] = Array((1,a), (2,b), (3,c))
    (4)第二个RDD组合第一个RDD并打印
    scala> rdd2.zip(rdd1).collect
    res2: Array[(String, Int)] = Array((a,1), (b,2), (c,3))
    (5)创建第三个RDD(与1,2分区数不同)
    scala> val rdd3 = sc.parallelize(Array(“a”,“b”,“c”),2)
    rdd3: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[5] at parallelize at :24
    (6)第一个RDD组合第三个RDD并打印
    scala> rdd1.zip(rdd3).collect
    java.lang.IllegalArgumentException: Can’t zip RDDs with unequal numbers of partitions: List(3, 2)
    at org.apache.spark.rdd.ZippedPartitionsBaseRDD.getPartitions(ZippedPartitionsRDD.scala:57)
    at org.apache.spark.rdd.RDDKaTeX parse error: Can't use function '$' in math mode at position 8: anonfun$̲partitions$2.ap…anonfun$partitions 2. a p p l y ( R D D . s c a l a : 250 ) a t s c a l a . O p t i o n . g e t O r E l s e ( O p t i o n . s c a l a : 121 ) a t o r g . a p a c h e . s p a r k . r d d . R D D . p a r t i t i o n s ( R D D . s c a l a : 250 ) a t o r g . a p a c h e . s p a r k . S p a r k C o n t e x t . r u n J o b ( S p a r k C o n t e x t . s c a l a : 1965 ) a t o r g . a p a c h e . s p a r k . r d d . R D D 2.apply(RDD.scala:250) at scala.Option.getOrElse(Option.scala:121) at org.apache.spark.rdd.RDD.partitions(RDD.scala:250) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1965) at org.apache.spark.rdd.RDD 2.apply(RDD.scala:250)atscala.Option.getOrElse(Option.scala:121)atorg.apache.spark.rdd.RDD.partitions(RDD.scala:250)atorg.apache.spark.SparkContext.runJob(SparkContext.scala:1965)atorg.apache.spark.rdd.RDD a n o n f u n anonfun anonfuncollect 1. a p p l y ( R D D . s c a l a : 936 ) a t o r g . a p a c h e . s p a r k . r d d . R D D O p e r a t i o n S c o p e 1.apply(RDD.scala:936) at org.apache.spark.rdd.RDDOperationScope 1.apply(RDD.scala:936)atorg.apache.spark.rdd.RDDOperationScope.withScope(RDDOperationScope.scala:151)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
    at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)
    at org.apache.spark.rdd.RDD.collect(RDD.scala:935)
    … 48 elided

Key-Value类型

partitionBy案例

  1. 作用:对pairRDD进行分区操作,如果原有的partionRDD和现有的partionRDD是一致的话就不进行分区, 否则会生成ShuffleRDD,即会产生shuffle过程。
  2. 需求:创建一个4个分区的RDD,对其重新分区
    (1)创建一个RDD
    scala> val rdd = sc.parallelize(Array((1,“aaa”),(2,“bbb”),(3,“ccc”),(4,“ddd”)),4)
    rdd: org.apache.spark.rdd.RDD[(Int, String)] = ParallelCollectionRDD[44] at parallelize at :24
    (2)查看RDD的分区数
    scala> rdd.partitions.size
    res24: Int = 4
    (3)对RDD重新分区
    scala> var rdd2 = rdd.partitionBy(new org.apache.spark.HashPartitioner(2))
    rdd2: org.apache.spark.rdd.RDD[(Int, String)] = ShuffledRDD[45] at partitionBy at :26
    (4)查看新RDD的分区数
    scala> rdd2.partitions.size
    res25: Int = 2

groupByKey案例

  1. 作用:groupByKey也是对每个key进行操作,但只生成一个sequence。
  2. 需求:创建一个pairRDD,将相同key对应值聚合到一个sequence中,并计算相同key对应值的相加结果。
    (1)创建一个pairRDD
    scala> val words = Array(“one”, “two”, “two”, “three”, “three”, “three”)
    words: Array[String] = Array(one, two, two, three, three, three)

scala> val wordPairsRDD = sc.parallelize(words).map(word => (word, 1))
wordPairsRDD: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[4] at map at :26
(2)将相同key对应值聚合到一个sequence中
scala> val group = wordPairsRDD.groupByKey()
group: org.apache.spark.rdd.RDD[(String, Iterable[Int])] = ShuffledRDD[5] at groupByKey at :28
(3)打印结果
scala> group.collect()
res1: Array[(String, Iterable[Int])] = Array((two,CompactBuffer(1, 1)), (one,CompactBuffer(1)), (three,CompactBuffer(1, 1, 1)))
(4)计算相同key对应值的相加结果
scala> group.map(t => (t._1, t._2.sum))
res2: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[6] at map at :31
(5)打印结果
scala> res2.collect()
res3: Array[(String, Int)] = Array((two,2), (one,1), (three,3))

reduceByKey(func, [numTasks]) 案例

  1. 在一个(K,V)的RDD上调用,返回一个(K,V)的RDD,使用指定的reduce函数,将相同key的值聚合到一起,reduce任务的个数可以通过第二个可选的参数来设置。
  2. 需求:创建一个pairRDD,计算相同key对应值的相加结果
    (1)创建一个pairRDD
    scala> val rdd = sc.parallelize(List((“female”,1),(“male”,5),(“female”,5),(“male”,2)))
    rdd: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[46] at parallelize at :24
    (2)计算相同key对应值的相加结果
    scala> val reduce = rdd.reduceByKey((x,y) => x+y)
    reduce: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[47] at reduceByKey at :26
    (3)打印结果
    scala> reduce.collect()
    res29: Array[(String, Int)] = Array((female,6), (male,7))

reduceByKey和groupByKey的区别

  1. reduceByKey:按照key进行聚合,在shuffle之前有combine(预聚合)操作,返回结果是RDD[k,v].
  2. groupByKey:按照key进行分组,直接进行shuffle。
  3. 开发指导:reduceByKey比groupByKey,建议使用。但是需要注意是否会影响业务逻辑。

aggregateByKey案例

参数:(zeroValue:U,[partitioner: Partitioner]) (seqOp: (U, V) => U,combOp: (U, U) => U)

  1. 作用:在kv对的RDD中,,按key将value进行分组合并,合并时,将每个value和初始值作为seq函数的参数,进行计算,返回的结果作为一个新的kv对,然后再将结果按照key进行合并,最后将每个分组的value传递给combine函数进行计算(先将前两个value进行计算,将返回结果和下一个value传给combine函数,以此类推),将key与计算结果作为一个新的kv对输出。
  2. 参数描述:
    (1)zeroValue:给每一个分区中的每一个key一个初始值;
    (2)seqOp:函数用于在每一个分区中用初始值逐步迭代value;
    (3)combOp:函数用于合并每个分区中的结果。
  3. 需求:创建一个pairRDD,取出每个分区相同key对应值的最大值,然后相加
  4. 需求分析
    在这里插入图片描述
    图1-aggregate案例分析
    (1)创建一个pairRDD
    scala> val rdd = sc.parallelize(List((“a”,3),(“a”,2),(“c”,4),(“b”,3),(“c”,6),(“c”,8)),2)
    rdd: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[0] at parallelize at :24
    (2)取出每个分区相同key对应值的最大值,然后相加
    scala> val agg = rdd.aggregateByKey(0)(math.max(,),+)
    agg: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[1] at aggregateByKey at :26
    (3)打印结果
    scala> agg.collect()
    res0: Array[(String, Int)] = Array((b,3), (a,3), (c,12))

foldByKey案例

参数:(zeroValue: V)(func: (V, V) => V): RDD[(K, V)]
1.作用:aggregateByKey的简化操作,seqop和combop相同
2.需求:创建一个pairRDD,计算相同key对应值的相加结果
(1)创建一个pairRDD
scala> val rdd = sc.parallelize(List((1,3),(1,2),(1,4),(2,3),(3,6),(3,8)),3)
rdd: org.apache.spark.rdd.RDD[(Int, Int)] = ParallelCollectionRDD[91] at parallelize at :24
(2)计算相同key对应值的相加结果
scala> val agg = rdd.foldByKey(0)(+)
agg: org.apache.spark.rdd.RDD[(Int, Int)] = ShuffledRDD[92] at foldByKey at :26
(3)打印结果
scala> agg.collect()
res61: Array[(Int, Int)] = Array((3,14), (1,9), (2,3))

combineByKey[C] 案例

参数:(createCombiner: V => C, mergeValue: (C, V) => C, mergeCombiners: (C, C) => C)
1.作用:对相同K,把V合并成一个集合。
2.参数描述:
(1)createCombiner: combineByKey() 会遍历分区中的所有元素,因此每个元素的键要么还没有遇到过,要么就和之前的某个元素的键相同。如果这是一个新的元素,combineByKey()会使用一个叫作createCombiner()的函数来创建那个键对应的累加器的初始值
(2)mergeValue: 如果这是一个在处理当前分区之前已经遇到的键,它会使用mergeValue()方法将该键的累加器对应的当前值与这个新的值进行合并
(3)mergeCombiners: 由于每个分区都是独立处理的, 因此对于同一个键可以有多个累加器。如果有两个或者更多的分区都有对应同一个键的累加器, 就需要使用用户提供的 mergeCombiners() 方法将各个分区的结果进行合并。
3.需求:创建一个pairRDD,根据key计算每种key的均值。(先计算每个key出现的次数以及可以对应值的总和,再相除得到结果)
4.需求分析:
在这里插入图片描述
图2- combineByKey案例分析
(1)创建一个pairRDD
scala> val input = sc.parallelize(Array((“a”, 88), (“b”, 95), (“a”, 91), (“b”, 93), (“a”, 95), (“b”, 98)),2)
input: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[52] at parallelize at :26
(2)将相同key对应的值相加,同时记录该key出现的次数,放入一个二元组
scala> val combine = input.combineByKey((_,1),(acc:(Int,Int),v)=>(acc._1+v,acc._2+1),(acc1:(Int,Int),acc2:(Int,Int))=>(acc1._1+acc2._1,acc1._2+acc2._2))
combine: org.apache.spark.rdd.RDD[(String, (Int, Int))] = ShuffledRDD[5] at combineByKey at :28
(3)打印合并后的结果
scala> combine.collect
res5: Array[(String, (Int, Int))] = Array((b,(286,3)), (a,(274,3)))
(4)计算平均值
scala> val result = combine.map{case (key,value) => (key,value._1/value._2.toDouble)}
result: org.apache.spark.rdd.RDD[(String, Double)] = MapPartitionsRDD[54] at map at :30
(5)打印结果
scala> result.collect()
res33: Array[(String, Double)] = Array((b,95.33333333333333), (a,91.33333333333333))

sortByKey([ascending], [numTasks]) 案例

  1. 作用:在一个(K,V)的RDD上调用,K必须实现Ordered接口,返回一个按照key进行排序的(K,V)的RDD
  2. 需求:创建一个pairRDD,按照key的正序和倒序进行排序
    (1)创建一个pairRDD
    scala> val rdd = sc.parallelize(Array((3,“aa”),(6,“cc”),(2,“bb”),(1,“dd”)))
    rdd: org.apache.spark.rdd.RDD[(Int, String)] = ParallelCollectionRDD[14] at parallelize at :24
    (2)按照key的正序
    scala> rdd.sortByKey(true).collect()
    res9: Array[(Int, String)] = Array((1,dd), (2,bb), (3,aa), (6,cc))
    (3)按照key的倒序
    scala> rdd.sortByKey(false).collect()
    res10: Array[(Int, String)] = Array((6,cc), (3,aa), (2,bb), (1,dd))

mapValues案例

  1. 针对于(K,V)形式的类型只对V进行操作
  2. 需求:创建一个pairRDD,并将value添加字符串"|||"
    (1)创建一个pairRDD
    scala> val rdd3 = sc.parallelize(Array((1,“a”),(1,“d”),(2,“b”),(3,“c”)))
    rdd3: org.apache.spark.rdd.RDD[(Int, String)] = ParallelCollectionRDD[67] at parallelize at :24
    (2)对value添加字符串"|||"
    scala> rdd3.mapValues(_+"|||").collect()
    res26: Array[(Int, String)] = Array((1,a|||), (1,d|||), (2,b|||), (3,c|||))

join(otherDataset, [numTasks]) 案例

  1. 作用:在类型为(K,V)和(K,W)的RDD上调用,返回一个相同key对应的所有元素对在一起的(K,(V,W))的RDD
  2. 需求:创建两个pairRDD,并将key相同的数据聚合到一个元组。
    (1)创建第一个pairRDD
    scala> val rdd = sc.parallelize(Array((1,“a”),(2,“b”),(3,“c”)))
    rdd: org.apache.spark.rdd.RDD[(Int, String)] = ParallelCollectionRDD[32] at parallelize at :24
    (2)创建第二个pairRDD
    scala> val rdd1 = sc.parallelize(Array((1,4),(2,5),(3,6)))
    rdd1: org.apache.spark.rdd.RDD[(Int, Int)] = ParallelCollectionRDD[33] at parallelize at :24
    (3)join操作并打印结果
    scala> rdd.join(rdd1).collect()
    res13: Array[(Int, (String, Int))] = Array((1,(a,4)), (2,(b,5)), (3,(c,6)))

cogroup(otherDataset, [numTasks]) 案例

  1. 作用:在类型为(K,V)和(K,W)的RDD上调用,返回一个(K,(Iterable,Iterable))类型的RDD
  2. 需求:创建两个pairRDD,并将key相同的数据聚合到一个迭代器。
    (1)创建第一个pairRDD
    scala> val rdd = sc.parallelize(Array((1,“a”),(2,“b”),(3,“c”)))
    rdd: org.apache.spark.rdd.RDD[(Int, String)] = ParallelCollectionRDD[37] at parallelize at :24
    (2)创建第二个pairRDD
    scala> val rdd1 = sc.parallelize(Array((1,4),(2,5),(3,6)))
    rdd1: org.apache.spark.rdd.RDD[(Int, Int)] = ParallelCollectionRDD[38] at parallelize at :24
    (3)cogroup两个RDD并打印结果
    scala> rdd.cogroup(rdd1).collect()
    res14: Array[(Int, (Iterable[String], Iterable[Int]))] = Array((1,(CompactBuffer(a),CompactBuffer(4))), (2,(CompactBuffer(b),CompactBuffer(5))), (3,(CompactBuffer©,CompactBuffer(6))))

案例实操

  1. 数据结构:时间戳,省份,城市,用户,广告,中间字段使用空格分割。

样本如下:
1516609143867 6 7 64 16
1516609143869 9 4 75 18
1516609143869 1 7 87 12
2. 需求:统计出每一个省份广告被点击次数的TOP3
3. 实现过程:

package com.package.practice

import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}

//需求:统计出每一个省份广告被点击次数的TOP3
object Practice {

  def main(args: Array[String]): Unit = {

    //1.初始化spark配置信息并建立与spark的连接
    val sparkConf = new SparkConf().setMaster("local[*]").setAppName("Practice")
    val sc = new SparkContext(sparkConf)

    //2.读取数据生成RDD:TS,Province,City,User,AD
    val line = sc.textFile("E:\\IDEAWorkSpace\\SparkTest\\src\\main\\resources\\agent.log")

    //3.按照最小粒度聚合:((Province,AD),1)
    val provinceAdToOne = line.map { x =>
      val fields: Array[String] = x.split(" ")
      ((fields(1), fields(4)), 1)
    }

    //4.计算每个省中每个广告被点击的总数:((Province,AD),sum)
    val provinceAdToSum = provinceAdToOne.reduceByKey(_ + _)

    //5.将省份作为key,广告加点击数为value:(Province,(AD,sum))
    val provinceToAdSum = provinceAdToSum.map(x => (x._1._1, (x._1._2, x._2)))

    //6.将同一个省份的所有广告进行聚合(Province,List((AD1,sum1),(AD2,sum2)...))
    val provinceGroup = provinceToAdSum.groupByKey()

    //7.对同一个省份所有广告的集合进行排序并取前3条,排序规则为广告点击总数
    val provinceAdTop3 = provinceGroup.mapValues { x =>
      x.toList.sortWith((x, y) => x._2 > y._2).take(3)
    }

    //8.将数据拉取到Driver端并打印
    provinceAdTop3.collect().foreach(println)

    //9.关闭与spark的连接
    sc.stop()
  }
  
}

Action

reduce(func)案例

  1. 作用:通过func函数聚集RDD中的所有元素,先聚合分区内数据,再聚合分区间数据。
  2. 需求:创建一个RDD,将所有元素聚合得到结果。
    (1)创建一个RDD[Int]
    scala> val rdd1 = sc.makeRDD(1 to 10,2)
    rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[85] at makeRDD at :24
    (2)聚合RDD[Int]所有元素
    scala> rdd1.reduce(+)
    res50: Int = 55
    (3)创建一个RDD[String]
    scala> val rdd2 = sc.makeRDD(Array((“a”,1),(“a”,3),(“c”,3),(“d”,5)))
    rdd2: org.apache.spark.rdd.RDD[(String, Int)] = ParallelCollectionRDD[86] at makeRDD at :24
    (4)聚合RDD[String]所有数据
    scala> rdd2.reduce((x,y)=>(x._1 + y._1,x._2 + y._2))
    res51: (String, Int) = (adca,12)

collect()案例

  1. 作用:在驱动程序中,以数组的形式返回数据集的所有元素。
  2. 需求:创建一个RDD,并将RDD内容收集到Driver端打印
    (1)创建一个RDD
    scala> val rdd = sc.parallelize(1 to 10)
    rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at :24
    (2)将结果收集到Driver端
    scala> rdd.collect
    res0: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

count()案例

  1. 作用:返回RDD中元素的个数
  2. 需求:创建一个RDD,统计该RDD的条数
    (1)创建一个RDD
    scala> val rdd = sc.parallelize(1 to 10)
    rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at :24
    (2)统计该RDD的条数
    scala> rdd.count
    res1: Long = 10

first()案例

  1. 作用:返回RDD中的第一个元素
  2. 需求:创建一个RDD,返回该RDD中的第一个元素
    (1)创建一个RDD
    scala> val rdd = sc.parallelize(1 to 10)
    rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at :24
    (2)统计该RDD的条数
    scala> rdd.first
    res2: Int = 1

take(n)案例

  1. 作用:返回一个由RDD的前n个元素组成的数组
  2. 需求:创建一个RDD,统计该RDD的条数
    (1)创建一个RDD
    scala> val rdd = sc.parallelize(Array(2,5,4,6,8,3))
    rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[2] at parallelize at :24
    (2)统计该RDD的条数
    scala> rdd.take(3)
    res10: Array[Int] = Array(2, 5, 4)

takeOrdered(n)案例

  1. 作用:返回该RDD排序后的前n个元素组成的数组
  2. 需求:创建一个RDD,统计该RDD的条数
    (1)创建一个RDD
    scala> val rdd = sc.parallelize(Array(2,5,4,6,8,3))
    rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[2] at parallelize at :24
    (2)统计该RDD的条数
    scala> rdd.takeOrdered(3)
    res18: Array[Int] = Array(2, 3, 4)

aggregate案例

  1. 参数:(zeroValue: U)(seqOp: (U, T) ⇒ U, combOp: (U, U) ⇒ U)
  2. 作用:aggregate函数将每个分区里面的元素通过seqOp和初始值进行聚合,然后用combine函数将每个分区的结果和初始值(zeroValue)进行combine操作。这个函数最终返回的类型不需要和RDD中元素类型一致。
  3. 需求:创建一个RDD,将所有元素相加得到结果
    (1)创建一个RDD
    scala> var rdd1 = sc.makeRDD(1 to 10,2)
    rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[88] at makeRDD at :24
    (2)将该RDD所有元素相加得到结果
    scala> rdd.aggregate(0)(+,+)
    res22: Int = 55

fold(num)(func)案例

  1. 作用:折叠操作,aggregate的简化操作,seqop和combop一样。
  2. 需求:创建一个RDD,将所有元素相加得到结果
    (1)创建一个RDD
    scala> var rdd1 = sc.makeRDD(1 to 10,2)
    rdd1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[88] at makeRDD at :24
    (2)将该RDD所有元素相加得到结果
    scala> rdd.fold(0)(+)
    res24: Int = 55

saveAsTextFile(path)

作用:将数据集的元素以textfile的形式保存到HDFS文件系统或者其他支持的文件系统,对于每个元素,Spark将会调用toString方法,将它装换为文件中的文本

saveAsSequenceFile(path)

作用:将数据集中的元素以Hadoop sequencefile的格式保存到指定的目录下,可以使HDFS或者其他Hadoop支持的文件系统。

saveAsObjectFile(path)

作用:用于将RDD中的元素序列化成对象,存储到文件中。

countByKey()案例

  1. 作用:针对(K,V)类型的RDD,返回一个(K,Int)的map,表示每一个key对应的元素个数。
  2. 需求:创建一个PairRDD,统计每种key的个数
    (1)创建一个PairRDD
    scala> val rdd = sc.parallelize(List((1,3),(1,2),(1,4),(2,3),(3,6),(3,8)),3)
    rdd: org.apache.spark.rdd.RDD[(Int, Int)] = ParallelCollectionRDD[95] at parallelize at :24
    (2)统计每种key的个数
    scala> rdd.countByKey
    res63: scala.collection.Map[Int,Long] = Map(3 -> 2, 1 -> 3, 2 -> 1)

foreach(func)案例

  1. 作用:在数据集的每一个元素上,运行函数func进行更新。
  2. 需求:创建一个RDD,对每个元素进行打印
    (1)创建一个RDD
    scala> var rdd = sc.makeRDD(1 to 5,2)
    rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[107] at makeRDD at :24
    (2)对该RDD每个元素进行打印
    scala> rdd.foreach(println(_))
    3
    4
    5
    1
    2

RDD中的函数传递

创建一个类

class Search(s:String){

//过滤出包含字符串的数据
  def isMatch(s: String): Boolean = {
    s.contains(query)
  }

//过滤出包含字符串的RDD
  def getMatch1 (rdd: RDD[String]): RDD[String] = {
    rdd.filter(isMatch)
  }

  //过滤出包含字符串的RDD
  def getMatche2(rdd: RDD[String]): RDD[String] = {
    rdd.filter(x => x.contains(query))
  }

}

创建Spark主程序

object SeriTest {

  def main(args: Array[String]): Unit = {

    //1.初始化配置信息及SparkContext
    val sparkConf: SparkConf = new SparkConf().setAppName("WordCount").setMaster("local[*]")
    val sc = new SparkContext(sparkConf)

//2.创建一个RDD
    val rdd: RDD[String] = sc.parallelize(Array("hadoop", "spark", "hive", "atguigu"))

//3.创建一个Search对象
    val search = new Search()

//4.运用第一个过滤函数并打印结果
    val match1: RDD[String] = search.getMatche1(rdd)
    match1.collect().foreach(println)
    }
}

运行程序

Exception in thread "main" org.apache.spark.SparkException: Task not serializable
    at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:298)
    at org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:288)
    at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:108)
    at org.apache.spark.SparkContext.clean(SparkContext.scala:2101)
    at org.apache.spark.rdd.RDD$$anonfun$filter$1.apply(RDD.scala:387)
    at org.apache.spark.rdd.RDD$$anonfun$filter$1.apply(RDD.scala:386)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
    at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)
    at org.apache.spark.rdd.RDD.filter(RDD.scala:386)
    at com.atguigu.Search.getMatche1(SeriTest.scala:39)
    at com.atguigu.SeriTest$.main(SeriTest.scala:18)
    at com.atguigu.SeriTest.main(SeriTest.scala)
Caused by: java.io.NotSerializableException: com.atguigu.Search

问题说明

//过滤出包含字符串的RDD
  def getMatch1 (rdd: RDD[String]): RDD[String] = {
    rdd.filter(isMatch)
  }

在这个方法中所调用的方法isMatch()是定义在Search这个类中的,实际上调用的是this. isMatch(),this表示Search这个类的对象,程序在运行过程中需要将Search对象序列化以后传递到Executor端。
5.解决方案
使类继承scala.Serializable即可。
class Search() extends Serializable{…}

传递一个属性

创建Spark主程序

object TransmitTest {

  def main(args: Array[String]): Unit = {

    //1.初始化配置信息及SparkContext
    val sparkConf: SparkConf = new SparkConf().setAppName("WordCount").setMaster("local[*]")
    val sc = new SparkContext(sparkConf)

//2.创建一个RDD
    val rdd: RDD[String] = sc.parallelize(Array("hadoop", "spark", "hive", "atguigu"))

//3.创建一个Search对象
    val search = new Search()

//4.运用第一个过滤函数并打印结果
    val match1: RDD[String] = search.getMatche2(rdd)
    match1.collect().foreach(println)
    }
}

运行程序

Exception in thread "main" org.apache.spark.SparkException: Task not serializable
    at org.apache.spark.util.ClosureCleaner$.ensureSerializable(ClosureCleaner.scala:298)
    at org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:288)
    at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:108)
    at org.apache.spark.SparkContext.clean(SparkContext.scala:2101)
    at org.apache.spark.rdd.RDD$$anonfun$filter$1.apply(RDD.scala:387)
    at org.apache.spark.rdd.RDD$$anonfun$filter$1.apply(RDD.scala:386)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
    at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
    at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)
    at org.apache.spark.rdd.RDD.filter(RDD.scala:386)
    at com.atguigu.Search.getMatche1(SeriTest.scala:39)
    at com.atguigu.SeriTest$.main(SeriTest.scala:18)
    at com.atguigu.SeriTest.main(SeriTest.scala)
Caused by: java.io.NotSerializableException: com.atguigu.Search

问题说明

 //过滤出包含字符串的RDD
  def getMatche2(rdd: RDD[String]): RDD[String] = {
    rdd.filter(x => x.contains(query))
  }

在这个方法中所调用的方法query是定义在Search这个类中的字段,实际上调用的是this. query,this表示Search这个类的对象,程序在运行过程中需要将Search对象序列化以后传递到Executor端。
4.解决方案
1)使类继承scala.Serializable即可。
class Search() extends Serializable{…}
2)将类变量query赋值给局部变量
修改getMatche2为

  //过滤出包含字符串的RDD
  def getMatche2(rdd: RDD[String]): RDD[String] = {
    val query_ : String = this.query//将类变量赋值给局部变量
    rdd.filter(x => x.contains(query_))
  }

RDD依赖关系

Lineage

RDD只支持粗粒度转换,即在大量记录上执行的单个操作。将创建RDD的一系列Lineage(血统)记录下来,以便恢复丢失的分区。RDD的Lineage会记录RDD的元数据信息和转换行为,当该RDD的部分分区数据丢失时,它可以根据这些信息来重新运算和恢复丢失的数据分区。
在这里插入图片描述
(1)读取一个HDFS文件并将其中内容映射成一个个元组
scala> val wordAndOne = sc.textFile("/fruit.tsv").flatMap(.split("\t")).map((,1))
wordAndOne: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[22] at map at :24
(2)统计每一种key对应的个数
scala> val wordAndCount = wordAndOne.reduceByKey(+)
wordAndCount: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[23] at reduceByKey at :26
(3)查看“wordAndOne”的Lineage
scala> wordAndOne.toDebugString
res5: String =
(2) MapPartitionsRDD[22] at map at :24 []
| MapPartitionsRDD[21] at flatMap at :24 []
| /fruit.tsv MapPartitionsRDD[20] at textFile at :24 []
| /fruit.tsv HadoopRDD[19] at textFile at :24 []
(4)查看“wordAndCount”的Lineage
scala> wordAndCount.toDebugString
res6: String =
(2) ShuffledRDD[23] at reduceByKey at :26 []
±(2) MapPartitionsRDD[22] at map at :24 []
| MapPartitionsRDD[21] at flatMap at :24 []
| /fruit.tsv MapPartitionsRDD[20] at textFile at :24 []
| /fruit.tsv HadoopRDD[19] at textFile at :24 []
(5)查看“wordAndOne”的依赖类型
scala> wordAndOne.dependencies
res7: Seq[org.apache.spark.Dependency[]] = List(org.apache.spark.OneToOneDependency@5d5db92b)
(6)查看“wordAndCount”的依赖类型
scala> wordAndCount.dependencies
res8: Seq[org.apache.spark.Dependency[
]] = List(org.apache.spark.ShuffleDependency@63f3e6a8)
注意:RDD和它依赖的父RDD(s)的关系有两种不同的类型,即窄依赖(narrow dependency)和宽依赖(wide dependency)。

窄依赖

窄依赖指的是每一个父RDD的Partition最多被子RDD的一个Partition使用,窄依赖我们形象的比喻为独生子女
在这里插入图片描述

宽依赖

宽依赖指的是多个子RDD的Partition会依赖同一个父RDD的Partition,会引起shuffle,总结:宽依赖我们形象的比喻为超生
在这里插入图片描述

DAG

DAG(Directed Acyclic Graph)叫做有向无环图,原始的RDD通过一系列的转换就就形成了DAG,根据RDD之间的依赖关系的不同将DAG划分成不同的Stage,对于窄依赖,partition的转换处理在Stage中完成计算。对于宽依赖,由于有Shuffle的存在,只能在parent RDD处理完成后,才能开始接下来的计算,因此宽依赖是划分Stage的依据。
在这里插入图片描述

任务划分

RDD任务切分中间分为:Application、Job、Stage和Task
1)Application:初始化一个SparkContext即生成一个Application
2)Job:一个Action算子就会生成一个Job
3)Stage:根据RDD之间的依赖关系的不同将Job划分成不同的Stage,遇到一个宽依赖则划分一个Stage。
在这里插入图片描述
4)Task:Stage是一个TaskSet,将Stage划分的结果发送到不同的Executor执行即为一个Task。
注意:Application->Job->Stage-> Task每一层都是1对n的关系。

RDD缓存

RDD通过persist方法或cache方法可以将前面的计算结果缓存,默认情况下 persist() 会把数据以序列化的形式缓存在 JVM 的堆空间中。
但是并不是这两个方法被调用时立即缓存,而是触发后面的action时,该RDD将会被缓存在计算节点的内存中,并供后面重用
在这里插入图片描述
通过查看源码发现cache最终也是调用了persist方法,默认的存储级别都是仅在内存存储一份,Spark的存储级别还有好多种,存储级别在object StorageLevel中定义的。
在这里插入图片描述
在存储级别的末尾加上“2”来把持久化数据存为两份
在这里插入图片描述
缓存有可能丢失,或者存储存储于内存的数据由于内存不足而被删除,RDD的缓存容错机制保证了即使缓存丢失也能保证计算的正确执行。通过基于RDD的一系列转换,丢失的数据会被重算,由于RDD的各个Partition是相对独立的,因此只需要计算丢失的部分即可,并不需要重算全部Partition。
(1)创建一个RDD
scala> val rdd = sc.makeRDD(Array(“atguigu”))
rdd: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[19] at makeRDD at :25
(2)将RDD转换为携带当前时间戳不做缓存
scala> val nocache = rdd.map(
.toString+System.currentTimeMillis)
nocache: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[20] at map at :27
(3)多次打印结果
scala> nocache.collect
res0: Array[String] = Array(atguigu1538978275359)

scala> nocache.collect
res1: Array[String] = Array(atguigu1538978282416)

scala> nocache.collect
res2: Array[String] = Array(atguigu1538978283199)
(4)将RDD转换为携带当前时间戳并做缓存
scala> val cache = rdd.map(_.toString+System.currentTimeMillis).cache
cache: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[21] at map at :27
(5)多次打印做了缓存的结果
scala> cache.collect
res3: Array[String] = Array(atguigu1538978435705)

scala> cache.collect
res4: Array[String] = Array(atguigu1538978435705)

scala> cache.collect
res5: Array[String] = Array(atguigu1538978435705)

RDD CheckPoint

Spark中对于数据的保存除了持久化操作之外,还提供了一种检查点的机制,检查点(本质是通过将RDD写入Disk做检查点)是为了通过lineage做容错的辅助,lineage过长会造成容错成本过高,这样就不如在中间阶段做检查点容错,如果之后有节点出现问题而丢失分区,从做检查点的RDD开始重做Lineage,就会减少开销。检查点通过将数据写入到HDFS文件系统实现了RDD的检查点功能。
为当前RDD设置检查点。该函数将会创建一个二进制的文件,并存储到checkpoint目录中,该目录是用SparkContext.setCheckpointDir()设置的。在checkpoint的过程中,该RDD的所有依赖于父RDD中的信息将全部被移除。对RDD进行checkpoint操作并不会马上被执行,必须执行Action操作才能触发。
案例实操:
(1)设置检查点
scala> sc.setCheckpointDir(“hdfs://hadoop102:9000/checkpoint”)
(2)创建一个RDD
scala> val rdd = sc.parallelize(Array(“atguigu”))
rdd: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[14] at parallelize at :24
(3)将RDD转换为携带当前时间戳并做checkpoint
scala> val ch = rdd.map(_+System.currentTimeMillis)
ch: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[16] at map at :26

scala> ch.checkpoint
(4)多次打印结果
scala> ch.collect
res55: Array[String] = Array(atguigu1538981860336)

scala> ch.collect
res56: Array[String] = Array(atguigu1538981860504)

scala> ch.collect
res57: Array[String] = Array(atguigu1538981860504)

scala> ch.collect
res58: Array[String] = Array(atguigu1538981860504)

键值对RDD数据分区器

Spark目前支持Hash分区和Range分区,用户也可以自定义分区,Hash分区为当前的默认分区,Spark中分区器直接决定了RDD中分区的个数、RDD中每条数据经过Shuffle过程属于哪个分区和Reduce的个数
注意:
(1)只有Key-Value类型的RDD才有分区器的,非Key-Value类型的RDD分区器的值是None
(2)每个RDD的分区ID范围:0~numPartitions-1,决定这个值是属于那个分区的。

获取RDD分区

可以通过使用RDD的partitioner 属性来获取 RDD 的分区方式。它会返回一个 scala.Option 对象, 通过get方法获取其中的值。相关源码如下:
def getPartition(key: Any): Int = key match {
case null => 0
case _ => Utils.nonNegativeMod(key.hashCode, numPartitions)
}
def nonNegativeMod(x: Int, mod: Int): Int = {
val rawMod = x % mod
rawMod + (if (rawMod < 0) mod else 0)
}
(1)创建一个pairRDD
scala> val pairs = sc.parallelize(List((1,1),(2,2),(3,3)))
pairs: org.apache.spark.rdd.RDD[(Int, Int)] = ParallelCollectionRDD[3] at parallelize at :24
(2)查看RDD的分区器
scala> pairs.partitioner
res1: Option[org.apache.spark.Partitioner] = None
(3)导入HashPartitioner类
scala> import org.apache.spark.HashPartitioner
import org.apache.spark.HashPartitioner
(4)使用HashPartitioner对RDD进行重新分区
scala> val partitioned = pairs.partitionBy(new HashPartitioner(2))
partitioned: org.apache.spark.rdd.RDD[(Int, Int)] = ShuffledRDD[4] at partitionBy at :27
(5)查看重新分区后RDD的分区器
scala> partitioned.partitioner
res2: Option[org.apache.spark.Partitioner] = Some(org.apache.spark.HashPartitioner@2)

Hash分区

HashPartitioner分区的原理:对于给定的key,计算其hashCode,并除以分区的个数取余,如果余数小于0,则用余数+分区的个数(否则加0),最后返回的值就是这个key所属的分区ID。
使用Hash分区的实操
scala> nopar.partitioner
res20: Option[org.apache.spark.Partitioner] = None

scala> val nopar = sc.parallelize(List((1,3),(1,2),(2,4),(2,3),(3,6),(3,8)),8)
nopar: org.apache.spark.rdd.RDD[(Int, Int)] = ParallelCollectionRDD[10] at parallelize at :24

scala>nopar.mapPartitionsWithIndex((index,iter)=>{ Iterator(index.toString+" : “+iter.mkString(”|")) }).collect
res0: Array[String] = Array("0 : ", 1 : (1,3), 2 : (1,2), 3 : (2,4), "4 : ", 5 : (2,3), 6 : (3,6), 7 : (3,8))
scala> val hashpar = nopar.partitionBy(new org.apache.spark.HashPartitioner(7))
hashpar: org.apache.spark.rdd.RDD[(Int, Int)] = ShuffledRDD[12] at partitionBy at :26

scala> hashpar.count
res18: Long = 6

scala> hashpar.partitioner
res21: Option[org.apache.spark.Partitioner] = Some(org.apache.spark.HashPartitioner@7)

scala> hashpar.mapPartitions(iter => Iterator(iter.length)).collect()
res19: Array[Int] = Array(0, 3, 1, 2, 0, 0, 0)

Ranger分区

HashPartitioner分区弊端:可能导致每个分区中数据量的不均匀,极端情况下会导致某些分区拥有RDD的全部数据。
RangePartitioner作用:将一定范围内的数映射到某一个分区内,尽量保证每个分区中数据量的均匀,而且分区与分区之间是有序的,一个分区中的元素肯定都是比另一个分区内的元素小或者大,但是分区内的元素是不能保证顺序的。简单的说就是将一定范围内的数映射到某一个分区内。实现过程为:
第一步:先重整个RDD中抽取出样本数据,将样本数据排序,计算出每个分区的最大key值,形成一个Array[KEY]类型的数组变量rangeBounds;
第二步:判断key在rangeBounds中所处的范围,给出该key值在下一个RDD中的分区id下标;该分区器要求RDD中的KEY类型必须是可以排序的

自定义分区

要实现自定义的分区器,你需要继承 org.apache.spark.Partitioner 类并实现下面三个方法。
(1)numPartitions: Int:返回创建出来的分区数。
(2)getPartition(key: Any): Int:返回给定键的分区编号(0到numPartitions-1)。
(3)equals():Java 判断相等性的标准方法。这个方法的实现非常重要,Spark 需要用这个方法来检查你的分区器对象是否和其他分区器实例相同,这样 Spark 才可以判断两个 RDD 的分区方式是否相同。
需求:将相同后缀的数据写入相同的文件,通过将相同后缀的数据分区到相同的分区并保存输出来实现。
(1)创建一个pairRDD
scala> val data = sc.parallelize(Array((1,1),(2,2),(3,3),(4,4),(5,5),(6,6)))
data: org.apache.spark.rdd.RDD[(Int, Int)] = ParallelCollectionRDD[3] at parallelize at :24
(2)定义一个自定义分区类
scala> :paste
// Entering paste mode (ctrl-D to finish)
class CustomerPartitioner(numParts:Int) extends org.apache.spark.Partitioner{

//覆盖分区数
override def numPartitions: Int = numParts

//覆盖分区号获取函数
override def getPartition(key: Any): Int = {
val ckey: String = key.toString
ckey.substring(ckey.length-1).toInt%numParts
}
}

// Exiting paste mode, now interpreting.

defined class CustomerPartitioner
(3)将RDD使用自定义的分区类进行重新分区
scala> val par = data.partitionBy(new CustomerPartitioner(2))
par: org.apache.spark.rdd.RDD[(Int, Int)] = ShuffledRDD[2] at partitionBy at :27
(4)查看重新分区后的数据分布
scala> par.mapPartitionsWithIndex((index,items)=>items.map((index,_))).collect
res3: Array[(Int, (Int, Int))] = Array((0,(2,2)), (0,(4,4)), (0,(6,6)), (1,(1,1)), (1,(3,3)), (1,(5,5)))
使用自定义的 Partitioner 是很容易的:只要把它传给 partitionBy() 方法即可。Spark 中有许多依赖于数据混洗的方法,比如 join() 和 groupByKey(),它们也可以接收一个可选的 Partitioner 对象来控制输出数据的分区方式。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值