0838计算机数学基础,计算机数学基础

本文详细介绍了高等数学中的核心概念,包括导数、微分、可微性与连续性的关系、平面曲线的切线与法线、泰勒公式以及洛必达法则等。同时,深入探讨了线性代数的基础知识,如行列式、矩阵的运算、向量组的线性相关性、特征值和特征向量等。内容涵盖微积分的基本定理、线性方程组的解法以及随机变量的概率分布和数字特征。
摘要由CSDN通过智能技术生成

转自知乎黄广海博士,侵删

一、高等数学

1.导数定义

导数和微分的该你拿

math?formula=f'(x_0)%3Dlim_%7B%5CDelta%5Crightarrow0%7D%5Cfrac%7Bf(x_0%2B%5CDelta%20x)-f(x_0)%7D%7B%5CDelta%20x%7D (1)

2.左右倒数的几何意义和物理意义

函数

math?formula=f(x)

math?formula=x_0处的左,右导数分别定义为:

左导数:

math?formula=f'_-(x_0)%3Dlim_%7B%5CDelta%5Crightarrow0%5E-%7D%5Cfrac%7Bf(x_0%2B%5CDelta%20x)-f(x_0)%7D%7B%5CDelta%20x%7D%3Dlim_%7Bx%5Crightarrow%20x_0%5E-%7D%5Cfrac%7Bf(x)-f(x_0)%7D%7Bx-x_0%7D%2C%20(x%3Dx_0%2B%5CDelta%20x)

右导数:

math?formula=f'_%2B(x_0)%3Dlim_%7B%5CDelta%5Crightarrow0%5E%2B%7D%5Cfrac%7Bf(x_0%2B%5CDelta%20x)-f(x_0)%7D%7B%5CDelta%20x%7D%3Dlim_%7Bx%5Crightarrow%20x_0%5E%2B%7D%5Cfrac%7Bf(x)-f(x_0)%7D%7Bx-x_0%7D

3.函数的可道姓与连续性之间的关系

Th1: 函数

math?formula=f(x)

math?formula=x_0处可微

math?formula=%5CLeftrightarrow函数

math?formula=f(x)

math?formula=x_0处可导

Th2: 若函数在

math?formula=x_0处可导,则

math?formula=y%3Df(x)

math?formula=x_0处连续,反之则不成立。即函数连续不一定可导。

Th3:

math?formula=f'(x)存在

math?formula=%5CLeftrightarrow%20f'_-(x_0)%3Df'_%2B(x_0)

4.平面曲线的切线和法线

切线方程:

math?formula=y-y_0%3Df'(x_0)(x-x_0) 法线方程:

math?formula=y-y_0%3D-%5Cfrac%7B1%7D%7Bf'(x_0)%7D(x-x_0)%2C%20f'(x_0)%5Cne0

5.四则运算法则

设函数

math?formula=u%3Du(x)%2Cv%3Dv(x)在点

math?formula=x可导则

(1)

math?formula=(u%5Cpm%20v%7B)%7D'%3D%7Bu%7D'%5Cpm%20%7Bv%7D'

math?formula=d(u%5Cpm%20v)%3Ddu%5Cpm%20dv

(2)

math?formula=(uv%7B)%7D'%3Du%7Bv%7D'%2Bv%7Bu%7D'

math?formula=d(uv)%3Dudv%2Bvdu

(3)

math?formula=(%5Cfrac%7Bu%7D%7Bv%7D%7B)%7D'%3D%5Cfrac%7Bv%7Bu%7D'-u%7Bv%7D'%7D%7B%7B%7Bv%7D%5E%7B2%7D%7D%7D(v%5Cne%200)

math?formula=d(%5Cfrac%7Bu%7D%7Bv%7D)%3D%5Cfrac%7Bvdu-udv%7D%7B%7B%7Bv%7D%5E%7B2%7D%7D%7D

6.基本导数和为分表

(1)

math?formula=y%3Dc(常数)

math?formula=%7By%7D'%3D0%EF%BC%8C%20dy%3D0

(2)

math?formula=y%3D%7B%7Bx%7D%5E%7B%5Calpha%20%7D%7D%20(%5Calpha%20%E4%B8%BA%E5%AE%9E%E6%95%B0)

math?formula=%7By%7D'%3D%5Calpha%20%7B%7Bx%7D%5E%7B%5Calpha%20-1%7D%7D

math?formula=dy%3D%5Calpha%20%7B%7Bx%7D%5E%7B%5Calpha%20-1%7D%7Ddx

(3)

math?formula=y%3D%7B%7Ba%7D%5E%7Bx%7D%7D

math?formula=%7By%7D'%3D%7B%7Ba%7D%5E%7Bx%7D%7D%5Cln%20a

math?formula=dy%3D%7B%7Ba%7D%5E%7Bx%7D%7D%5Cln%20adx

特例:

math?formula=(%7B%7B%7Be%7D%7D%5E%7Bx%7D%7D%7B)%7D'%3D%7B%7B%7Be%7D%7D%5E%7Bx%7D%7D%EF%BC%8C%20d(%7B%7B%7Be%7D%7D%5E%7Bx%7D%7D)%3D%7B%7B%7Be%7D%7D%5E%7Bx%7D%7Ddx

(4)

math?formula=%7By%7D'%3D%5Cfrac%7B1%7D%7Bx%5Cln%20a%7D

math?formula=dy%3D%5Cfrac%7B1%7D%7Bx%5Cln%20a%7Ddx

特例:

math?formula=y%3D%5Cln%20x%EF%BC%8C(%5Cln%20x%7B)%7D'%3D%5Cfrac%7B1%7D%7Bx%7D%20%EF%BC%8Cd(%5Cln%20x)%3D%5Cfrac%7B1%7D%7Bx%7Ddx

(5)

math?formula=y%3D%5Csin%20x

math?formula=%7By%7D'%3D%5Ccos%20x%20%EF%BC%8Cd(%5Csin%20x)%3D%5Ccos%20xdx%EF%BC%8C%20y%3D%5Ccos%20x

(6)

math?formula=y%3D%5Ccos%20x

math?formula=%7By%7D'%3D-%5Csin%20x%EF%BC%8C%20d(%5Ccos%20x)%3D-%5Csin%20xdx

(7)

math?formula=y%3D%5Ctan%20x

math?formula=%7By%7D'%3D%5Cfrac%7B1%7D%7B%7B%7B%5Ccos%20%7D%5E%7B2%7D%7Dx%7D%3D%7B%7B%5Csec%20%7D%5E%7B2%7D%7Dx%EF%BC%8C%20d(%5Ctan%20x)%3D%7B%7B%5Csec%20%7D%5E%7B2%7D%7Dxdx

(8)

math?formula=y%3D%5Ccot%20x

math?formula=%7By%7D'%3D-%5Cfrac%7B1%7D%7B%7B%7B%5Csin%20%7D%5E%7B2%7D%7Dx%7D%3D-%7B%7B%5Ccsc%20%7D%5E%7B2%7D%7Dx%EF%BC%8C%20d(%5Ccot%20x)%3D-%7B%7B%5Ccsc%20%7D%5E%7B2%7D%7Dxdx

(9)

math?formula=y%3D%5Csec%20x

math?formula=%7By%7D'%3D%5Csec%20x%5Ctan%20x%20%EF%BC%8Cd(%5Csec%20x)%3D%5Csec%20x%5Ctan%20xdx

(10)

math?formula=y%3D%5Ccsc%20x

math?formula=%7By%7D'%3D-%5Ccsc%20x%5Ccot%20x%EF%BC%8C%20d(%5Ccsc%20x)%3D-%5Ccsc%20x%5Ccot%20xdx

(11)

math?formula=y%3D%5Carcsin%20x

math?formula=%7By%7D'%3D%5Cfrac%7B1%7D%7B%5Csqrt%7B1-%7B%7Bx%7D%5E%7B2%7D%7D%7D%7D%EF%BC%8C%20d(%5Carcsin%20x)%3D%5Cfrac%7B1%7D%7B%5Csqrt%7B1-%7B%7Bx%7D%5E%7B2%7D%7D%7D%7Ddx

(12)

math?formula=y%3D%5Carccos%20x

math?formula=%7By%7D'%3D-%5Cfrac%7B1%7D%7B%5Csqrt%7B1-%7B%7Bx%7D%5E%7B2%7D%7D%7D%7D%EF%BC%8C%20d(%5Carccos%20x)%3D-%5Cfrac%7B1%7D%7B%5Csqrt%7B1-%7B%7Bx%7D%5E%7B2%7D%7D%7D%7Ddx

(13)

math?formula=y%3D%5Carctan%20x

math?formula=%7By%7D'%3D%5Cfrac%7B1%7D%7B1%2B%7B%7Bx%7D%5E%7B2%7D%7D%7D%20%EF%BC%8Cd(%5Carctan%20x)%3D%5Cfrac%7B1%7D%7B1%2B%7B%7Bx%7D%5E%7B2%7D%7D%7Ddx

(14)

math?formula=y%3D%5Coperatorname%7Barc%7D%5Ccot%20x

math?formula=%7By%7D'%3D-%5Cfrac%7B1%7D%7B1%2B%7B%7Bx%7D%5E%7B2%7D%7D%7D%EF%BC%8C%20d(%5Coperatorname%7Barc%7D%5Ccot%20x)%3D-%5Cfrac%7B1%7D%7B1%2B%7B%7Bx%7D%5E%7B2%7D%7D%7Ddx

(15)

math?formula=y%3Dshx

math?formula=%7By%7D'%3Dchx%20%EF%BC%8Cd(shx)%3Dchxdx

(16)

math?formula=y%3Dchx

math?formula=%7By%7D'%3Dshx%EF%BC%8C%20d(chx)%3Dshxdx

7.复合函数,反函数,隐函数以及参数方程所确定的函数的微分法

(1) 反函数的运算法则: 设

math?formula=y%3Df(x)在点

math?formula=x的某邻域内单调连续,在点

math?formula=x处可导且

math?formula=%7Bf%7D'(x)%5Cne%200,则其反函数在点

math?formula=x所对应的

math?formula=y处可导,并且有

math?formula=%5Cfrac%7Bdy%7D%7Bdx%7D%3D%5Cfrac%7B1%7D%7B%5Cfrac%7Bdx%7D%7Bdy%7D%7D

(2) 复合函数的运算法则:若

math?formula=%5Cmu%20%3D%5Cvarphi%20(x)在点

math?formula=x可导,而

math?formula=y%3Df(%5Cmu%20)在对应点

math?formula=%5Cmu%20(%20%5Cmu%20%3D%5Cvarphi%20(x)%20)可导,则复合函数

math?formula=y%3Df(%5Cvarphi%20(x))在点

math?formula=x可导,且

math?formula=%7By%7D'%3D%7Bf%7D'(%5Cmu%20)%5Ccdot%20%7B%5Cvarphi%20%7D'(x)

(3) 隐函数导数

math?formula=%5Cfrac%7Bdy%7D%7Bdx%7D的求法一般有三种方法:

1)方程两边对

math?formula=x求导,要记住

math?formula=y

math?formula=x的函数,则

math?formula=y的函数是

math?formula=x的复合函数。

例如

math?formula=%5Cfrac%7B1%7D%7By%7D%20%EF%BC%8C%20%7B%7By%7D%5E%7B2%7D%7D%20%EF%BC%8C%20ln%20y%20%EF%BC%8C%20%7B%7B%7Be%7D%7D%5E%7By%7D%7D 等均是

math?formula=x 的复合函数。

math?formula=x 求导应按复合函数连锁法则做。

2)公式法:由

math?formula=F(x%2Cy)%3D0

math?formula=%5Cfrac%7Bdy%7D%7Bdx%7D%3D-%5Cfrac%7B%7B%7B%7B%7BF%7D'%7D%7D_%7Bx%7D%7D(x%2Cy)%7D%7B%7B%7B%7B%7BF%7D'%7D%7D_%7By%7D%7D(x%2Cy)%7D ,其中,

math?formula=%7B%7B%7BF%7D'%7D_%7Bx%7D%7D(x%2Cy)%20%EF%BC%8C%20%7B%7B%7BF%7D'%7D_%7By%7D%7D(x%2Cy) 分别表示

math?formula=F(x%2Cy)

math?formula=x

math?formula=y 的偏导数.

3)利用微分形式不变性

8.常用高阶导数公式

(1)

math?formula=(%7B%7Ba%7D%5E%7Bx%7D%7D)%7B%7B%5C%2C%7D%5E%7B(n)%7D%7D%3D%7B%7Ba%7D%5E%7Bx%7D%7D%7B%7B%5Cln%20%7D%5E%7Bn%7D%7Da%5Cquad%20(a%3E%7B0%7D)%5Cquad%20%5Cquad%20(%7B%7B%7Be%7D%7D%5E%7Bx%7D%7D)%7B%7B%5C%2C%7D%5E%7B(n)%7D%7D%3D%7Be%7D%7B%7B%5C%2C%7D%5E%7Bx%7D%7D.

(2)

math?formula=(%5Csin%20kx%7B)%7D%7B%7B%5C%2C%7D%5E%7B(n)%7D%7D%3D%7B%7Bk%7D%5E%7Bn%7D%7D%5Csin%20(kx%2Bn%5Ccdot%20%5Cfrac%7B%5Cpi%20%7D%7B%7B2%7D%7D)

(3)

math?formula=(%5Ccos%20kx%7B)%7D%7B%7B%5C%2C%7D%5E%7B(n)%7D%7D%3D%7B%7Bk%7D%5E%7Bn%7D%7D%5Ccos%20(kx%2Bn%5Ccdot%20%5Cfrac%7B%5Cpi%20%7D%7B%7B2%7D%7D)

(4)

math?formula=(%7B%7Bx%7D%5E%7Bm%7D%7D)%7B%7B%5C%2C%7D%5E%7B(n)%7D%7D%3Dm(m-1)%5Ccdots%20(m-n%2B1)%7B%7Bx%7D%5E%7Bm-n%7D%7D

(5)

math?formula=(%5Cln%20x)%7B%7B%5C%2C%7D%5E%7B(n)%7D%7D%3D%7B%7B(-%7B1%7D)%7D%5E%7B(n-%7B1%7D)%7D%7D%5Cfrac%7B(n-%7B1%7D)!%7D%7B%7B%7Bx%7D%5E%7Bn%7D%7D%7D

(6)莱布尼兹公式:若

math?formula=u(x)%5C%2C%2Cv(x)

math?formula=n 阶可导,则

math?formula=%7B%7B(uv)%7D%5E%7B(n)%7D%7D%3D%5Csum%5Climits_%7Bi%3D%7B0%7D%7D%5E%7Bn%7D%7Bc_%7Bn%7D%5E%7Bi%7D%7B%7Bu%7D%5E%7B(i)%7D%7D%7B%7Bv%7D%5E%7B(n-i)%7D%7D%7D ,其中

math?formula=%7B%7Bu%7D%5E%7B(%7B0%7D)%7D%7D%3Du%20%EF%BC%8C%20%7B%7Bv%7D%5E%7B(%7B0%7D)%7D%7D%3Dv

9.微分中值定理,,泰勒公式

Th1:(费马定理)

若函数

math?formula=f(x) 满足条件:

(1)函数

math?formula=f(x)

math?formula=%7B%7Bx%7D_%7B0%7D%7D 的某邻域内有定义,并且在此邻域内恒有:

math?formula=f(x)%5Cle%20f(%7B%7Bx%7D_%7B0%7D%7D)

math?formula=f(x)%5Cge%20f(%7B%7Bx%7D_%7B0%7D%7D) ,

(2)

math?formula=f(x)

math?formula=%7B%7Bx%7D_%7B0%7D%7D 处可导,则有

math?formula=%7Bf%7D'(%7B%7Bx%7D_%7B0%7D%7D)%3D0

Th2:(罗尔定理)

设函数

math?formula=f(x) 满足条件:

(1)在闭区间

math?formula=%5Ba%2Cb%5D 上连续;

(2)在

math?formula=(a%2Cb) 内可导;

(3)

math?formula=f(a)%3Df(b)

则在

math?formula=(a%2Cb) 内存在一个

math?formula=%5Cxi ,使

math?formula=%7Bf%7D'(%5Cxi%20)%3D0

Th3:(拉格朗日中值定理)

设函数

math?formula=f(x) 满足条件:

(1)在

math?formula=%5Ba%2Cb%5D 上连续;

(2)在

math?formula=(a%2Cb) 内可导;

则在

math?formula=(a%2Cb) 内存在一个

math?formula=%5Cxi ,使

math?formula=%5Cfrac%7Bf(b)-f(a)%7D%7Bb-a%7D%3D%7Bf%7D'(%5Cxi%20)

Th4:(柯西中值定理)

设函数

math?formula=f(x)%20%EF%BC%8C%20g(x) 满足条件:

(1) 在

math?formula=%5Ba%2Cb%5D 上连续;

(2) 在

math?formula=(a%2Cb) 内可导且

math?formula=%7Bf%7D'(x)%20%EF%BC%8C%20%7Bg%7D'(x) 均存在,且

math?formula=%7Bg%7D'(x)%5Cne%200.

则在

math?formula=(a%2Cb) 内存在一个

math?formula=%5Cxi ,使

math?formula=%5Cfrac%7Bf(b)-f(a)%7D%7Bg(b)-g(a)%7D%3D%5Cfrac%7B%7Bf%7D'(%5Cxi%20)%7D%7B%7Bg%7D'(%5Cxi%20)%7D

10.洛必达法则

法则Ⅰ (

math?formula=%5Cfrac%7B0%7D%7B0%7D 型)

设函数

math?formula=f%5Cleft(%20x%20%5Cright)%2Cg%5Cleft(%20x%20%5Cright) 满足条件:

math?formula=%5Cunderset%7Bx%5Cto%20%7B%7Bx%7D_%7B0%7D%7D%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2Cf%5Cleft(%20x%20%5Cright)%3D0%2C%5Cunderset%7Bx%5Cto%20%7B%7Bx%7D_%7B0%7D%7D%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2Cg%5Cleft(%20x%20%5Cright)%3D0 ;

math?formula=f%5Cleft(%20x%20%5Cright)%2Cg%5Cleft(%20x%20%5Cright)

math?formula=%7B%7Bx%7D_%7B0%7D%7D 的邻域内可导,(在

math?formula=%7B%7Bx%7D_%7B0%7D%7D 处可除外)且

math?formula=%7Bg%7D'%5Cleft(%20x%20%5Cright)%5Cne 0 ;

math?formula=%5Cunderset%7Bx%5Cto%20%7B%7Bx%7D_%7B0%7D%7D%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2C%5Cfrac%7B%7Bf%7D'%5Cleft(%20x%20%5Cright)%7D%7B%7Bg%7D'%5Cleft(%20x%20%5Cright)%7D 存在(或

math?formula=%5Cinfty )。

则:

math?formula=%5Cunderset%7Bx%5Cto%20%7B%7Bx%7D_%7B0%7D%7D%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2C%5Cfrac%7Bf%5Cleft(%20x%20%5Cright)%7D%7Bg%5Cleft(%20x%20%5Cright)%7D%3D%5Cunderset%7Bx%5Cto%20%7B%7Bx%7D_%7B0%7D%7D%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2C%5Cfrac%7B%7Bf%7D'%5Cleft(%20x%20%5Cright)%7D%7B%7Bg%7D'%5Cleft(%20x%20%5Cright)%7D

法则

math?formula=%7B%7B%5Ctext%20I%7D'%7D (

math?formula=%5Cfrac%7B0%7D%7B0%7D 型)

设函数

math?formula=f%5Cleft(%20x%20%5Cright)%2Cg%5Cleft(%20x%20%5Cright) 满足条件:

math?formula=%5Cunderset%7Bx%5Cto%20%5Cinfty%20%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2Cf%5Cleft(%20x%20%5Cright)%3D0%2C%5Cunderset%7Bx%5Cto%20%5Cinfty%20%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2Cg%5Cleft(%20x%20%5Cright)%3D0 ;

存在一个

math?formula=X%3E0 ,当

math?formula=%5Cleft%7C%20x%20%5Cright%7C%3EX 时,

math?formula=f%5Cleft(%20x%20%5Cright)%2Cg%5Cleft(%20x%20%5Cright)%20%E5%8F%AF%E5%AF%BC%2C%E4%B8%94%20%7Bg%7D'%5Cleft(%20x%20%5Cright)%5Cne%200 ;

math?formula=%5Cunderset%7Bx%5Cto%20%7B%7Bx%7D_%7B0%7D%7D%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2C%5Cfrac%7B%7Bf%7D'%5Cleft(%20x%20%5Cright)%7D%7B%7Bg%7D'%5Cleft(%20x%20%5Cright)%7D 存在(或

math?formula=%5Cinfty )。

则:

math?formula=%5Cunderset%7Bx%5Cto%20%7B%7Bx%7D_%7B0%7D%7D%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2C%5Cfrac%7Bf%5Cleft(%20x%20%5Cright)%7D%7Bg%5Cleft(%20x%20%5Cright)%7D%3D%5Cunderset%7Bx%5Cto%20%7B%7Bx%7D_%7B0%7D%7D%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2C%5Cfrac%7B%7Bf%7D'%5Cleft(%20x%20%5Cright)%7D%7B%7Bg%7D'%5Cleft(%20x%20%5Cright)%7D

法则Ⅱ(

math?formula=%5Cfrac%7B%5Cinfty%20%7D%7B%5Cinfty%20%7D型)

设函数

math?formula=f%5Cleft(%20x%20%5Cright)%2Cg%5Cleft(%20x%20%5Cright)满足条件:

math?formula=%5Cunderset%7Bx%5Cto%20%7B%7Bx%7D_%7B0%7D%7D%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2Cf%5Cleft(%20x%20%5Cright)%3D%5Cinfty%20%2C%5Cunderset%7Bx%5Cto%20%7B%7Bx%7D_%7B0%7D%7D%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2Cg%5Cleft(%20x%20%5Cright)%3D%5Cinfty%20%3B%20f%5Cleft(%20x%20%5Cright)%2Cg%5Cleft(%20x%20%5Cright)

math?formula=%7B%7Bx%7D_%7B0%7D%7D 的邻域内可导(在

math?formula=%7B%7Bx%7D_%7B0%7D%7D 处可除外)且

math?formula=%7Bg%7D'%5Cleft(%20x%20%5Cright)%5Cne%200%20%3B%20%5Cunderset%7Bx%5Cto%20%7B%7Bx%7D_%7B0%7D%7D%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2C%5Cfrac%7B%7Bf%7D'%5Cleft(%20x%20%5Cright)%7D%7B%7Bg%7D'%5Cleft(%20x%20%5Cright)%7D 存在(或

math?formula=%5Cinfty )。

则:

math?formula=%5Cunderset%7Bx%5Cto%20%7B%7Bx%7D_%7B0%7D%7D%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2C%5Cfrac%7Bf%5Cleft(%20x%20%5Cright)%7D%7Bg%5Cleft(%20x%20%5Cright)%7D%3D%5Cunderset%7Bx%5Cto%20%7B%7Bx%7D_%7B0%7D%7D%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2C%5Cfrac%7B%7Bf%7D'%5Cleft(%20x%20%5Cright)%7D%7B%7Bg%7D'%5Cleft(%20x%20%5Cright)%7D 。同理法则

math?formula=%7B%5Ctext%20I%7B%5Ctext%20I%7D'%7D (

math?formula=%5Cfrac%7B%5Cinfty%20%7D%7B%5Cinfty%20%7D 型)仿法则

math?formula=%7B%7B%5Ctext%20I%7D'%7D可写出。

11.泰勒公式

设函数

math?formula=f(x) 在点

math?formula=%7B%7Bx%7D_%7B0%7D%7D 处的某邻域内具有

math?formula=n%2B1 阶导数,则对该邻域内异于

math?formula=%7B%7Bx%7D_%7B0%7D%7D 的任意点

math?formula=x ,在

math?formula=%7B%7Bx%7D_%7B0%7D%7D

math?formula=x 之间至少存在一个

math?formula=%5Cxi ,使得:

math?formula=f(x)%3Df(%7B%7Bx%7D_%7B0%7D%7D)%2B%7Bf%7D'(%7B%7Bx%7D_%7B0%7D%7D)(x-%7B%7Bx%7D_%7B0%7D%7D)%2B%5Cfrac%7B1%7D%7B2!%7D%7Bf%7D''(%7B%7Bx%7D_%7B0%7D%7D)%7B%7B(x-%7B%7Bx%7D_%7B0%7D%7D)%7D%5E%7B2%7D%7D%2B%5Ccdots%20%2B%5Cfrac%7B%7B%7Bf%7D%5E%7B(n)%7D%7D(%7B%7Bx%7D_%7B0%7D%7D)%7D%7Bn!%7D%7B%7B(x-%7B%7Bx%7D_%7B0%7D%7D)%7D%5E%7Bn%7D%7D%2B%7B%7BR%7D_%7Bn%7D%7D(x)

其中

math?formula=%7B%7BR%7D_%7Bn%7D%7D(x)%3D%5Cfrac%7B%7B%7Bf%7D%5E%7B(n%2B1)%7D%7D(%5Cxi%20)%7D%7B(n%2B1)!%7D%7B%7B(x-%7B%7Bx%7D_%7B0%7D%7D)%7D%5E%7Bn%2B1%7D%7D 称为

math?formula=f(x) 在点

math?formula=%7B%7Bx%7D_%7B0%7D%7D 处的

math?formula=n 阶泰勒余项。

math?formula=%7B%7Bx%7D_%7B0%7D%7D%3D0 ,则

math?formula=n 阶泰勒公式:

math?formula=f(x)%3Df(0)%2B%7Bf%7D'(0)x%2B%5Cfrac%7B1%7D%7B2!%7D%7Bf%7D''(0)%7B%7Bx%7D%5E%7B2%7D%7D%2B%5Ccdots%20%2B%5Cfrac%7B%7B%7Bf%7D%5E%7B(n)%7D%7D(0)%7D%7Bn!%7D%7B%7Bx%7D%5E%7Bn%7D%7D%2B%7B%7BR%7D_%7Bn%7D%7D(x)%20%E2%80%A6%E2%80%A6(1)%20%E5%85%B6%E4%B8%AD%20%7B%7BR%7D_%7Bn%7D%7D(x)%3D%5Cfrac%7B%7B%7Bf%7D%5E%7B(n%2B1)%7D%7D(%5Cxi%20)%7D%7B(n%2B1)!%7D%7B%7Bx%7D%5E%7Bn%2B1%7D%7D%20%EF%BC%8C%20%5Cxi 在0与

math?formula=x 之间,(1)式称为麦克劳林公式。

常用五种函数在

math?formula=%7B%7Bx%7D_%7B0%7D%7D%3D0 处的泰勒公式

(1)

math?formula=%7B%7B%7Be%7D%7D%5E%7Bx%7D%7D%3D1%2Bx%2B%5Cfrac%7B1%7D%7B2!%7D%7B%7Bx%7D%5E%7B2%7D%7D%2B%5Ccdots%20%2B%5Cfrac%7B1%7D%7Bn!%7D%7B%7Bx%7D%5E%7Bn%7D%7D%2B%5Cfrac%7B%7B%7Bx%7D%5E%7Bn%2B1%7D%7D%7D%7B(n%2B1)!%7D%7B%7Be%7D%5E%7B%5Cxi%20%7D%7D

math?formula=%3D1%2Bx%2B%5Cfrac%7B1%7D%7B2!%7D%7B%7Bx%7D%5E%7B2%7D%7D%2B%5Ccdots%20%2B%5Cfrac%7B1%7D%7Bn!%7D%7B%7Bx%7D%5E%7Bn%7D%7D%2Bo(%7B%7Bx%7D%5E%7Bn%7D%7D)

(2)

math?formula=%5Csin%20x%3Dx-%5Cfrac%7B1%7D%7B3!%7D%7B%7Bx%7D%5E%7B3%7D%7D%2B%5Ccdots%20%2B%5Cfrac%7B%7B%7Bx%7D%5E%7Bn%7D%7D%7D%7Bn!%7D%5Csin%20%5Cfrac%7Bn%5Cpi%20%7D%7B2%7D%2B%5Cfrac%7B%7B%7Bx%7D%5E%7Bn%2B1%7D%7D%7D%7B(n%2B1)!%7D%5Csin%20(%5Cxi%20%2B%5Cfrac%7Bn%2B1%7D%7B2%7D%5Cpi%20)

math?formula=%3Dx-%5Cfrac%7B1%7D%7B3!%7D%7B%7Bx%7D%5E%7B3%7D%7D%2B%5Ccdots%20%2B%5Cfrac%7B%7B%7Bx%7D%5E%7Bn%7D%7D%7D%7Bn!%7D%5Csin%20%5Cfrac%7Bn%5Cpi%20%7D%7B2%7D%2Bo(%7B%7Bx%7D%5E%7Bn%7D%7D)

(3)

math?formula=%5Ccos%20x%3D1-%5Cfrac%7B1%7D%7B2!%7D%7B%7Bx%7D%5E%7B2%7D%7D%2B%5Ccdots%20%2B%5Cfrac%7B%7B%7Bx%7D%5E%7Bn%7D%7D%7D%7Bn!%7D%5Ccos%20%5Cfrac%7Bn%5Cpi%20%7D%7B2%7D%2B%5Cfrac%7B%7B%7Bx%7D%5E%7Bn%2B1%7D%7D%7D%7B(n%2B1)!%7D%5Ccos%20(%5Cxi%20%2B%5Cfrac%7Bn%2B1%7D%7B2%7D%5Cpi%20)

math?formula=%3D1-%5Cfrac%7B1%7D%7B2!%7D%7B%7Bx%7D%5E%7B2%7D%7D%2B%5Ccdots%20%2B%5Cfrac%7B%7B%7Bx%7D%5E%7Bn%7D%7D%7D%7Bn!%7D%5Ccos%20%5Cfrac%7Bn%5Cpi%20%7D%7B2%7D%2Bo(%7B%7Bx%7D%5E%7Bn%7D%7D)

(4)

math?formula=%5Cln%20(1%2Bx)%3Dx-%5Cfrac%7B1%7D%7B2%7D%7B%7Bx%7D%5E%7B2%7D%7D%2B%5Cfrac%7B1%7D%7B3%7D%7B%7Bx%7D%5E%7B3%7D%7D-%5Ccdots%20%2B%7B%7B(-1)%7D%5E%7Bn-1%7D%7D%5Cfrac%7B%7B%7Bx%7D%5E%7Bn%7D%7D%7D%7Bn%7D%2B%5Cfrac%7B%7B%7B(-1)%7D%5E%7Bn%7D%7D%7B%7Bx%7D%5E%7Bn%2B1%7D%7D%7D%7B(n%2B1)%7B%7B(1%2B%5Cxi%20)%7D%5E%7Bn%2B1%7D%7D%7D

math?formula=%3Dx-%5Cfrac%7B1%7D%7B2%7D%7B%7Bx%7D%5E%7B2%7D%7D%2B%5Cfrac%7B1%7D%7B3%7D%7B%7Bx%7D%5E%7B3%7D%7D-%5Ccdots%20%2B%7B%7B(-1)%7D%5E%7Bn-1%7D%7D%5Cfrac%7B%7B%7Bx%7D%5E%7Bn%7D%7D%7D%7Bn%7D%2Bo(%7B%7Bx%7D%5E%7Bn%7D%7D)%20aa

(5)

math?formula=a%20%7B%7B(1%2Bx)%7D%5E%7Bm%7D%7D%3D1%2Bmx%2B%5Cfrac%7Bm(m-1)%7D%7B2!%7D%7B%7Bx%7D%5E%7B2%7D%7D%2B%5Ccdots%20%2B%5Cfrac%7Bm(m-1)%5Ccdots%20(m-n%2B1)%7D%7Bn!%7D%7B%7Bx%7D%5E%7Bn%7D%7D%20%2B%5Cfrac%7Bm(m-1)%5Ccdots%20(m-n%2B1)%7D%7B(n%2B1)!%7D%7B%7Bx%7D%5E%7Bn%2B1%7D%7D%7B%7B(1%2B%5Cxi%20)%7D%5E%7Bm-n-1%7D%7D.

math?formula=%7B%7B(1%2Bx)%7D%5E%7Bm%7D%7D%3D1%2Bmx%2B%5Cfrac%7Bm(m-1)%7D%7B2!%7D%7B%7Bx%7D%5E%7B2%7D%7D%2B%5Ccdots%20%2B%5Cfrac%7Bm(m-1)%5Ccdots%20(m-n%2B1)%7D%7Bn!%7D%7B%7Bx%7D%5E%7Bn%7D%7D%2Bo(%7B%7Bx%7D%5E%7Bn%7D%7D)

12.函数单调性的判断

Th1: 设函数

math?formula=f(x)

math?formula=(a%2Cb) 区间内可导,如果对

math?formula=%5Cforall%20x%5Cin%20(a%2Cb) ,都有

math?formula=f%5C%2C'(x)%3E0 (或

math?formula=f%5C%2C'(x)%3C0 ),则函数

math?formula=f(x)

math?formula=(a%2Cb) 内是单调增加的(或单调减少)。

Th2: (取极值的必要条件)设函数

math?formula=f(x)%20%E5%9C%A8%20%7B%7Bx%7D_%7B0%7D%7D 处可导,且在

math?formula=%7B%7Bx%7D_%7B0%7D%7D 处取极值,

math?formula=f%5C%2C'(%7B%7Bx%7D_%7B0%7D%7D)%3D0

Th3: (取极值的第一充分条件)设函数

math?formula=f(x)

math?formula=%7B%7Bx%7D_%7B0%7D%7D 的某一邻域内可微,且

math?formula=f%5C%2C'(%7B%7Bx%7D_%7B0%7D%7D)%3D0 (或

math?formula=f(x)

math?formula=%7B%7Bx%7D_%7B0%7D%7D 处连续,但

math?formula=f%5C%2C'(%7B%7Bx%7D_%7B0%7D%7D) 不存在。)

(1) 若当

math?formula=x经过

math?formula=%7B%7Bx%7D_%7B0%7D%7D 时,

math?formula=f%5C%2C'(x) 由“+”变“-”,则

math?formula=f(%7B%7Bx%7D_%7B0%7D%7D)为极大值;

(2) 若当

math?formula=x 经过

math?formula=%7B%7Bx%7D_%7B0%7D%7D 时,

math?formula=f%5C%2C'(x) 由“-”变“+”,则

math?formula=f(%7B%7Bx%7D_%7B0%7D%7D) 为极小值;

(3) 若

math?formula=f%5C%2C'(x) 经过

math?formula=x%3D%7B%7Bx%7D_%7B0%7D%7D 的两侧不变号,则

math?formula=f(%7B%7Bx%7D_%7B0%7D%7D) 不是极值。

Th4: (取极值的第二充分条件)设

math?formula=f(x)

math?formula=%7B%7Bx%7D_%7B0%7D%7D 处有

math?formula=f''(x)%5Cne%200 ,且

math?formula=f%5C%2C'(%7B%7Bx%7D_%7B0%7D%7D)%3D0 ,则:

math?formula=f'%5C%2C'(%7B%7Bx%7D_%7B0%7D%7D)%3C0 时,

math?formula=f(%7B%7Bx%7D_%7B0%7D%7D) 为极大值;

math?formula=f'%5C%2C'(%7B%7Bx%7D_%7B0%7D%7D)%3E0 时,

math?formula=f(%7B%7Bx%7D_%7B0%7D%7D) 为极小值。

注:如果

math?formula=f'%5C%2C'(%7B%7Bx%7D_%7B0%7D%7D)%3C0 ,此方法失效。

13.渐近线的求法

(1)水平渐近线

math?formula=%5Cunderset%7Bx%5Cto%20%2B%5Cinfty%20%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2Cf(x)%3Db ,或

math?formula=%5Cunderset%7Bx%5Cto%20-%5Cinfty%20%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2Cf(x)%3Db ,则

math?formula=y%3Db 称为函数

math?formula=y%3Df(x) 的水平渐近线。

(2)铅直渐近线

math?formula=%5Cunderset%7Bx%5Cto%20x_%7B0%7D%5E%7B-%7D%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2Cf(x)%3D%5Cinfty ,或

math?formula=%5Cunderset%7Bx%5Cto%20x_%7B0%7D%5E%7B%2B%7D%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2Cf(x)%3D%5Cinfty ,则

math?formula=x%3D%7B%7Bx%7D_%7B0%7D%7D%20%E7%A7%B0%E4%B8%BA%20y%3Df(x) 的铅直渐近线。

(3)斜渐近线

math?formula=a%3D%5Cunderset%7Bx%5Cto%20%5Cinfty%20%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2C%5Cfrac%7Bf(x)%7D%7Bx%7D%2C%5Cquad%20b%3D%5Cunderset%7Bx%5Cto%20%5Cinfty%20%7D%7B%5Cmathop%7B%5Clim%20%7D%7D%5C%2C%5Bf(x)-ax%5D ,则

math?formula=y%3Dax%2Bb 称为

math?formula=y%3Df(x) 的斜渐近线。

14.函数凹凸性的判断

Th1: (凹凸性的判别定理)若在I上

math?formula=f''(x)%3C0 (或

math?formula=f''(x)%3E0 ),则

math?formula=f(x) 在I上是凸的(或凹的)。

Th2: (拐点的判别定理1)若在

math?formula=%7B%7Bx%7D_%7B0%7D%7D

math?formula=f''(x)%3D0 ,(或

math?formula=f''(x) 不存在),当

math?formula=x 变动经过

math?formula=%7B%7Bx%7D_%7B0%7D%7D 时,

math?formula=f''(x) 变号,则

math?formula=(%7B%7Bx%7D_%7B0%7D%7D%2Cf(%7B%7Bx%7D_%7B0%7D%7D)) 为拐点。

Th3: (拐点的判别定理2)设

math?formula=f(x)

math?formula=%7B%7Bx%7D_%7B0%7D%7D 点的某邻域内有三阶导数,且

math?formula=f''(x)%3D0%20%EF%BC%8C%20f'''(x)%5Cne%200 ,则

math?formula=(%7B%7Bx%7D_%7B0%7D%7D%2Cf(%7B%7Bx%7D_%7B0%7D%7D)) 为拐点。

15.弧微分

math?formula=dS%3D%5Csqrt%7B1%2By%7B%7B'%7D%5E%7B2%7D%7D%7Ddx

16.曲率

曲线

math?formula=y%3Df(x) 在点

math?formula=(x%2Cy) 处的曲率

math?formula=k%3D%5Cfrac%7B%5Cleft%7C%20y''%20%5Cright%7C%7D%7B%7B%7B(1%2By%7B%7B'%7D%5E%7B2%7D%7D)%7D%5E%7B%5Ctfrac%7B3%7D%7B2%7D%7D%7D%7D

对于参数方程

math?formula=%5Cleft%5C%7B%20%5Cbegin%7Balign%7D%20%26%20x%3D%5Cvarphi%20(t)%20%5C%5C%20%26%20y%3D%5Cpsi%20(t)%20%5C%5C%20%5Cend%7Balign%7D%20%5Cright.%2C%20k%3D%5Cfrac%7B%5Cleft%7C%20%5Cvarphi%20'(t)%5Cpsi%20''(t)-%5Cvarphi%20''(t)%5Cpsi%20'(t)%20%5Cright%7C%7D%7B%7B%7B%5B%5Cvarphi%20%7B%7B'%7D%5E%7B2%7D%7D(t)%2B%5Cpsi%20%7B%7B'%7D%5E%7B2%7D%7D(t)%5D%7D%5E%7B%5Ctfrac%7B3%7D%7B2%7D%7D%7D%7D

17.曲率半径

曲线在点 M 处的曲率

math?formula=k(k%5Cne%200)与曲线在点 M 处的曲率半径 \rho 有如下关系:

math?formula=%5Crho%20%3D%5Cfrac%7B1%7D%7Bk%7D

二、线性代数

行列式

1.行列式按行(列)展开定理

(1) 设

math?formula=A%20%3D%20(%20a_%7B%7Bij%7D%7D%20)_%7Bn%20%5Ctimes%20n%7D ,则:

math?formula=a_%7Bi1%7DA_%7Bj1%7D%20%2Ba_%7Bi2%7DA_%7Bj2%7D%20%2B%20%5Ccdots%20%2B%20a_%7B%7Bin%7D%7DA_%7B%7Bjn%7D%7D%20%3D%20%5Cbegin%7Bcases%7D%7CA%7C%2Ci%3Dj%5C%5C%200%2Ci%20%5Cneq%20j%5Cend%7Bcases%7D

math?formula=a_%7B1i%7DA_%7B1j%7D%20%2B%20a_%7B2i%7DA_%7B2j%7D%20%2B%20%5Ccdots%20%2B%20a_%7B%7Bni%7D%7DA_%7B%7Bnj%7D%7D%20%3D%20%5Cbegin%7Bcases%7D%7CA%7C%2Ci%3Dj%5C%5C%200%2Ci%20%5Cneq%20j%5Cend%7Bcases%7D ,即

math?formula=AA%5E%7B*%7D%20%3D%20A%5E%7B*%7DA%20%3D%20%5Cleft%7C%20A%20%5Cright%7CE

其中:

math?formula=A%5E%7B*%7D%20%3D%20%5Cbegin%7Bpmatrix%7D%20A_%7B11%7D%20%26%20A_%7B12%7D%20%26%20%5Cldots%20%26%20A_%7B1n%7D%20%5C%5C%20A_%7B21%7D%20%26%20A_%7B22%7D%20%26%20%5Cldots%20%26%20A_%7B2n%7D%20%5C%5C%20%5Cldots%20%26%20%5Cldots%20%26%20%5Cldots%20%26%20%5Cldots%20%5C%5C%20A_%7Bn1%7D%20%26%20A_%7Bn2%7D%20%26%20%5Cldots%20%26%20A_%7B%7Bnn%7D%7D%20%5C%5C%20%5Cend%7Bpmatrix%7D%20%3D%20(A_%7B%7Bji%7D%7D)%20%3D%20%7B(A_%7B%7Bij%7D%7D)%7D%5E%7BT%7D

math?formula=D_%7Bn%7D%20%3D%20%5Cbegin%7Bvmatrix%7D%201%20%26%201%20%26%20%5Cldots%20%26%201%20%5C%5C%20x_%7B1%7D%20%26%20x_%7B2%7D%20%26%20%5Cldots%20%26%20x_%7Bn%7D%20%5C%5C%20%5Cldots%20%26%20%5Cldots%20%26%20%5Cldots%20%26%20%5Cldots%20%5C%5C%20x_%7B1%7D%5E%7Bn%20-%201%7D%20%26%20x_%7B2%7D%5E%7Bn%20-%201%7D%20%26%20%5Cldots%20%26%20x_%7Bn%7D%5E%7Bn%20-%201%7D%20%5C%5C%20%5Cend%7Bvmatrix%7D%20%3D%20%5Cprod_%7B1%20%5Cleq%20j%20%3C%20i%20%5Cleq%20n%7D%5E%7B%7D%5C%2C(x_%7Bi%7D%20-%20x_%7Bj%7D)

(2) 设 A,B 为 n 阶方阵,则

math?formula=%5Cleft%7C%20%7BAB%7D%20%5Cright%7C%20%3D%20%5Cleft%7C%20A%20%5Cright%7C%5Cleft%7C%20B%20%5Cright%7C%20%3D%20%5Cleft%7C%20B%20%5Cright%7C%5Cleft%7C%20A%20%5Cright%7C%20%3D%20%5Cleft%7C%20%7BBA%7D%20%5Cright%7C%20%EF%BC%8C%E4%BD%86%20%5Cleft%7C%20A%20%5Cpm%20B%20%5Cright%7C%20%3D%20%5Cleft%7C%20A%20%5Cright%7C%20%5Cpm%20%5Cleft%7C%20B%20%5Cright%7C 不一定成立。

(3)

math?formula=%5Cleft%7C%20%7BkA%7D%20%5Cright%7C%20%3D%20k%5E%7Bn%7D%5Cleft%7C%20A%20%5Cright%7C , A 为 n 阶方阵。

(4) 设 A 为 n 阶方阵,

math?formula=%7CA%5E%7BT%7D%7C%20%3D%20%7CA%7C%3B%7CA%5E%7B-%201%7D%7C%20%3D%20%7CA%7C%5E%7B-%201%7D (若 A 可逆),

math?formula=%7CA%5E%7B*%7D%7C%20%3D%20%7CA%7C%5E%7Bn%20-%201%7D%20n%20%5Cgeq%202

(5)

math?formula=%5Cleft%7C%20%5Cbegin%7Bmatrix%7D%20%26%20%7BA%5Cquad%20O%7D%20%5C%5C%20%26%20%7BO%5Cquad%20B%7D%20%5C%5C%20%5Cend%7Bmatrix%7D%20%5Cright%7C%20%3D%20%5Cleft%7C%20%5Cbegin%7Bmatrix%7D%20%26%20%7BA%5Cquad%20C%7D%20%5C%5C%20%26%20%7BO%5Cquad%20B%7D%20%5C%5C%20%5Cend%7Bmatrix%7D%20%5Cright%7C%20%3D%20%5Cleft%7C%20%5Cbegin%7Bmatrix%7D%20%26%20%7BA%5Cquad%20O%7D%20%5C%5C%20%26%20%7BC%5Cquad%20B%7D%20%5C%5C%20%5Cend%7Bmatrix%7D%20%5Cright%7C%20%3D%7C%20A%7C%7CB%7C

, A,B 为方阵,但

math?formula=%5Cleft%7C%20%5Cbegin%7Bmatrix%7D%20%7BO%7D%20%26%20A_%7Bm%20%5Ctimes%20m%7D%20%5C%5C%20B_%7Bn%20%5Ctimes%20n%7D%20%26%20%7B%20O%7D%20%5C%5C%20%5Cend%7Bmatrix%7D%20%5Cright%7C%20%3D%20(%7B-%201)%7D%5E%7B%7Bmn%7D%7D%7CA%7C%7CB%7C

(6) 范德蒙行列式

math?formula=D_%7Bn%7D%20%3D%20%5Cbegin%7Bvmatrix%7D%201%20%26%201%20%26%20%5Cldots%20%26%201%20%5C%5C%20x_%7B1%7D%20%26%20x_%7B2%7D%20%26%20%5Cldots%20%26%20x_%7Bn%7D%20%5C%5C%20%5Cldots%20%26%20%5Cldots%20%26%20%5Cldots%20%26%20%5Cldots%20%5C%5C%20x_%7B1%7D%5E%7Bn%20-%201%7D%20%26%20x_%7B2%7D%5E%7Bn%201%7D%20%26%20%5Cldots%20%26%20x_%7Bn%7D%5E%7Bn%20-%201%7D%20%5C%5C%20%5Cend%7Bvmatrix%7D%20%3D%20%5Cprod_%7B1%20%5Cleq%20j%20%3C%20i%20%5Cleq%20n%7D%5E%7B%7D%5C%2C(x_%7Bi%7D%20-%20x_%7Bj%7D)

设 A 是 n 阶方阵,

math?formula=%5Clambda_%7Bi%7D(i%20%3D%201%2C2%5Ccdots%2Cn)%20%E6%98%AF%20A%20%E7%9A%84%20n%20%E4%B8%AA%E7%89%B9%E5%BE%81%E5%80%BC%EF%BC%8C%E5%88%99%20%7CA%7C%20%3D%20%5Cprod_%7Bi%20%3D%201%7D%5E%7Bn%7D%5Clambda_%7Bi%7D

矩阵

矩阵:

math?formula=m%20%5Ctimes%20n%20%E4%B8%AA%E6%95%B0%20a_%7B%7Bij%7D%7D 排成 m 行 n 列的表格

math?formula=%5Cbegin%7Bbmatrix%7D%20a_%7B11%7D%5Cquad%20a_%7B12%7D%5Cquad%5Ccdots%5Cquad%20a_%7B1n%7D%20%5C%5C%20a_%7B21%7D%5Cquad%20a_%7B22%7D%5Cquad%5Ccdots%5Cquad%20a_%7B2n%7D%20%5C%5C%20%5Cquad%5Ccdots%5Ccdots%5Ccdots%5Ccdots%5Ccdots%20%5C%5C%20a_%7Bm1%7D%5Cquad%20a_%7Bm2%7D%5Cquad%5Ccdots%5Cquad%20a_%7B%7Bmn%7D%7D%20%5C%5C%20%5Cend%7Bbmatrix%7D 称为矩阵,简记为 A ,或者

math?formula=%5Cleft(%20a_%7B%7Bij%7D%7D%20%5Cright)_%7Bm%20%5Ctimes%20n%7D 。若 m = n ,则称 A 是 n 阶矩阵或 n 阶方阵。

矩阵的线性运算

1.矩阵的加法

math?formula=A%20%3D%20(a_%7B%7Bij%7D%7D)%20%2C%20B%20%3D%20(b_%7B%7Bij%7D%7D) 是两个

math?formula=m%20%5Ctimes%20n 矩阵,则

math?formula=m%20%5Ctimes%20n 矩阵

math?formula=C%20%3D%20(c_%7B%7Bij%7D%7D)%20%3D%20a_%7B%7Bij%7D%7D%20%2B%20b_%7B%7Bij%7D%7D称为矩阵

math?formula=A

math?formula=B 的和,记为

math?formula=A%20%2B%20B%20%3D%20C

2.矩阵的数乘

math?formula=A%20%3D%20(a_%7B%7Bij%7D%7D)

math?formula=m%20%5Ctimes%20n矩阵,

math?formula=k 是一个常数,则

math?formula=m%20%5Ctimes%20n 矩阵

math?formula=(ka_%7B%7Bij%7D%7D) 称为数

math?formula=k 与矩阵

math?formula=A的数乘,记为

math?formula=%7BkA%7D

3.矩阵的乘法

math?formula=A%20%3D%20(a_%7B%7Bij%7D%7D)

math?formula=m%20%5Ctimes%20n矩阵,

math?formula=B%20%3D%20(b_%7B%7Bij%7D%7D)

math?formula=n%20%5Ctimes%20s 矩阵,那么

math?formula=m%20%5Ctimes%20s 矩阵

math?formula=C%20%3D%20(c_%7B%7Bij%7D%7D) ,其中

math?formula=c_%7B%7Bij%7D%7D%20%3D%20a_%7Bi1%7Db_%7B1j%7D%20%2B%20a_%7Bi2%7Db_%7B2j%7D%20%2B%20%5Ccdots%20%2B%20a_%7B%7Bin%7D%7Db_%7B%7Bnj%7D%7D%20%3D%20%5Csum_%7Bk%20%3D1%7D%5E%7Bn%7D%7Ba_%7B%7Bik%7D%7Db_%7B%7Bkj%7D%7D%7D 称为

math?formula=AB的乘积,记为

math?formula=C%20%3D%20AB

4.

math?formula=%5Cmathbf%7BA%7D%5E%7B%5Cmathbf%7BT%7D%7D%20%E3%80%81%20%5Cmathbf%7BA%7D%5E%7B%5Cmathbf%7B-1%7D%7D%20%E3%80%81%20%5Cmathbf%7BA%7D%5E%7B%5Cmathbf%7B*%7D%7D 三者之间的关系

(1)

math?formula=%7B(A%5E%7BT%7D)%7D%5E%7BT%7D%20%3D%20A%2C%7B(AB)%7D%5E%7BT%7D%20%3D%20B%5E%7BT%7DA%5E%7BT%7D%2C%7B(kA)%7D%5E%7BT%7D%20%3D%20kA%5E%7BT%7D%2C%7B(A%20%5Cpm%20B)%7D%5E%7BT%7D%20%3D%20A%5E%7BT%7D%20%5Cpm%20B%5E%7BT%7D

(2)

math?formula=%5Cleft(%20A%5E%7B-%201%7D%20%5Cright)%5E%7B-%201%7D%20%3D%20A%2C%5Cleft(%20%7BAB%7D%20%5Cright)%5E%7B-%201%7D%20%3D%20B%5E%7B-%201%7DA%5E%7B-%201%7D%2C%5Cleft(%20%7BkA%7D%20%5Cright)%5E%7B-%201%7D%20%3D%20%5Cfrac%7B1%7D%7Bk%7DA%5E%7B-%201%7D

math?formula=%7B(A%20%5Cpm%20B)%7D%5E%7B-%201%7D%20%3D%20A%5E%7B-%201%7D%20%5Cpm%20B%5E%7B-%201%7D 不一定成立。

(3)

math?formula=%5Cleft(%20A%5E%7B*%7D%20%5Cright)%5E%7B*%7D%20%3D%20%7CA%7C%5E%7Bn%20-%202%7D%5C%20A%5C%20%5C%20(n%20%5Cgeq%203)%20%EF%BC%8C%20%5Cleft(%7BAB%7D%20%5Cright)%5E%7B*%7D%20%3D%20B%5E%7B*%7DA%5E%7B*%7D%2C%5Cleft(%20%7BkA%7D%20%5Cright)%5E%7B*%7D%20%3D%20k%5E%7Bn%20-1%7DA%5E%7B*%7D%7B%5C%20%5C%20%7D%5Cleft(%20n%20%5Cgeq%202%20%5Cright)

math?formula=%5Cleft(%20A%20%5Cpm%20B%20%5Cright)%5E%7B*%7D%20%3D%20A%5E%7B*%7D%20%5Cpm%20B%5E%7B*%7D不一定成立。

(4)

math?formula=%7B(A%5E%7B-%201%7D)%7D%5E%7BT%7D%20%3D%20%7B(A%5E%7BT%7D)%7D%5E%7B-%201%7D%2C%5C%20%5Cleft(%20A%5E%7B-%201%7D%20%5Cright)%5E%7B*%7D%20%3D%7B(AA%5E%7B*%7D)%7D%5E%7B-%201%7D%2C%7B(A%5E%7B*%7D)%7D%5E%7BT%7D%20%3D%20%5Cleft(%20A%5E%7BT%7D%20%5Cright)%5E%7B*%7D

5.有关 \mathbf{A}^{\mathbf{}} 的结论*

(1)

math?formula=AA%5E%7B*%7D%20%3D%20A%5E%7B*%7DA%20%3D%20%7CA%7CE

(2)

math?formula=%7CA%5E%7B*%7D%7C%20%3D%20%7CA%7C%5E%7Bn%20-%201%7D%5C%20(n%20%5Cgeq%202)%2C%5C%20%5C%20%5C%20%5C%20%7B(kA)%7D%5E%7B*%7D%20%3D%20k%5E%7Bn%20-1%7DA%5E%7B*%7D%2C%7B%7B%5C%20%5C%20%7D%5Cleft(%20A%5E%7B*%7D%20%5Cright)%7D%5E%7B*%7D%20%3D%20%7CA%7C%5E%7Bn%20-%202%7DA(n%20%5Cgeq%203)

(3) 若

math?formula=A 可逆,则

math?formula=A%5E%7B*%7D%20%3D%20%7CA%7CA%5E%7B-%201%7D%2C%7B(A%5E%7B*%7D)%7D%5E%7B*%7D%20%3D%20%5Cfrac%7B1%7D%7B%7CA%7C%7DA

(4) 若

math?formula=A为 n 阶方阵,则:

math?formula=r(A%5E*)%3D%5Cbegin%7Bcases%7Dn%2C%5Cquad%20r(A)%3Dn%5C%5C%201%2C%5Cquad%20r(A)%3Dn-1%5C%5C%200%2C%5Cquad%20r(A)%3Cn-1%5Cend%7Bcases%7D

6.有关 \mathbf{A}^{\mathbf{- 1}} 的结论

A 可逆

math?formula=%5CLeftrightarrow%20AB%20%3D%20E%3B%20%5CLeftrightarrow%20%7CA%7C%20%5Cneq%200%3B%20%5CLeftrightarrow%20r(A)%20%3D%20n%3B

math?formula=%5CLeftrightarrow%20A 可以表示为初等矩阵的乘积;

math?formula=%5CLeftrightarrow%20A%3B%5CLeftrightarrow%20Ax%20%3D%200

7.有关矩阵秩的结论

(1) 秩

math?formula=r(A) =行秩=列秩;

(2)

math?formula=r(A_%7Bm%20%5Ctimes%20n%7D)%20%5Cleq%20%5Cmin(m%2Cn);

(3)

math?formula=A%20%5Cneq%200%20%5CRightarrow%20r(A)%20%5Cgeq%201;

(4)

math?formula=r(A%20%5Cpm%20B)%20%5Cleq%20r(A)%20%2B%20r(B);

(5) 初等变换不改变矩阵的秩

(6)

math?formula=r(A)%20%2B%20r(B)%20-%20n%20%5Cleq%20r(AB)%20%5Cleq%20%5Cmin(r(A)%2Cr(B)) ,特别若

math?formula=AB%20%3D%20O

则:

math?formula=r(A)%20%2B%20r(B)%20%5Cleq%20n

(7) 若

math?formula=A%5E%7B-%201%7D 存在

math?formula=%5CRightarrow%20r(AB)%20%3D%20r(B)%3B%20%E8%8B%A5%20B%5E%7B-%201%7D 存在,

math?formula=%5CRightarrow%20r(AB)%20%3D%20r(A)

(8)

math?formula=r(A_%7Bm%20%5Ctimes%20s%7D)%20%3D%20n%20%5CLeftrightarrow%20Ax%20%3D%200只有零解

8.分块求逆公式

math?formula=%5Cbegin%7Bpmatrix%7D%20A%20%26%20O%20%5C%5C%20O%20%26%20B%20%5C%5C%20%5Cend%7Bpmatrix%7D%5E%7B-%201%7D%20%3D%20%5Cbegin%7Bpmatrix%7D%20A%5E%7B-1%7D%20%26%20O%20%5C%5C%20O%20%26%20B%5E%7B-%201%7D%20%5C%5C%20%5Cend%7Bpmatrix%7D

math?formula=%5Cbegin%7Bpmatrix%7D%20A%20%26%20C%20%5C%5C%20O%20%26%20B%20%5C%5C%5Cend%7Bpmatrix%7D%5E%7B-%201%7D%20%3D%20%5Cbegin%7Bpmatrix%7D%20A%5E%7B-%201%7D%26%20-%20A%5E%7B-%201%7DCB%5E%7B-%201%7D%20%5C%5C%20O%20%26%20B%5E%7B-%201%7D%20%5C%5C%20%5Cend%7Bpmatrix%7D

math?formula=%5Cbegin%7Bpmatrix%7D%20A%20%26%20O%20%5C%5C%20C%20%26%20B%20%5C%5C%20%5Cend%7Bpmatrix%7D%5E%7B-%201%7D%20%3D%20%5Cbegin%7Bpmatrix%7D%20A%5E%7B-%201%7D%26%7BO%7D%20%5C%5C%20-%20B%5E%7B-%201%7DCA%5E%7B-%201%7D%20%26%20B%5E%7B-%201%7D%20%5C%5C%5Cend%7Bpmatrix%7D

math?formula=%5Cbegin%7Bpmatrix%7D%20O%20%26%20A%20%5C%5C%20B%20%26%20O%20%5C%5C%20%5Cend%7Bpmatrix%7D%5E%7B-%201%7D%20%3D%5Cbegin%7Bpmatrix%7D%20O%20%26%20B%5E%7B-%201%7D%20%5C%5C%20A%5E%7B-%201%7D%20%26%20O%20%5C%5C%20%5Cend%7Bpmatrix%7D

这里 A , B 均为可逆方阵。

向量

1.有关向量组的线性表示

(1)

math?formula=%5Calpha_%7B1%7D%2C%5Calpha_%7B2%7D%2C%5Ccdots%2C%5Calpha_%7Bs%7D 线性相关

math?formula=%5CLeftrightarrow至少有一个向量可以用其余向量线性表示。

(2)

math?formula=%5Calpha_%7B1%7D%2C%5Calpha_%7B2%7D%2C%5Ccdots%2C%5Calpha_%7Bs%7D 线性无关,

math?formula=%5Calpha_%7B1%7D%2C%5Calpha_%7B2%7D%2C%5Ccdots%2C%5Calpha_%7Bs%7D%20%EF%BC%8C%20%5Cbeta 线性相关

math?formula=%5CLeftrightarrow%20%5Cbeta 可以由

math?formula=%5Calpha_%7B1%7D%2C%5Calpha_%7B2%7D%2C%5Ccdots%2C%5Calpha_%7Bs%7D唯一线性表示。

(3)

math?formula=%5Cbeta 可以由

math?formula=%5Calpha_%7B1%7D%2C%5Calpha_%7B2%7D%2C%5Ccdots%2C%5Calpha_%7Bs%7D 线性表示

math?formula=%5CLeftrightarrow%20r(%5Calpha_%7B1%7D%2C%5Calpha_%7B2%7D%2C%5Ccdots%2C%5Calpha_%7Bs%7D)%20%3Dr(%5Calpha_%7B1%7D%2C%5Calpha_%7B2%7D%2C%5Ccdots%2C%5Calpha_%7Bs%7D%2C%5Cbeta)

2.有关向量组的线性相关性

(1)部分相关,整体相关;整体无关,部分无关.

(2) ① n 个 n 维向量

math?formula=%5Calpha_%7B1%7D%2C%5Calpha_%7B2%7D%5Ccdots%5Calpha_%7Bn%7D 线性无关

math?formula=%5CLeftrightarrow%20%5Cleft%7C%5Cleft%5Clbrack%20%5Calpha_%7B1%7D%5Calpha_%7B2%7D%5Ccdots%5Calpha_%7Bn%7D%20%5Cright%5Crbrack%20%5Cright%7C%20%5Cneq0

n 个 n维向量

math?formula=%5Calpha_%7B1%7D%2C%5Calpha_%7B2%7D%5Ccdots%5Calpha_%7Bn%7D 线性相关

math?formula=%5CLeftrightarrow%20%7C%5Clbrack%5Calpha_%7B1%7D%2C%5Calpha_%7B2%7D%2C%5Ccdots%2C%5Calpha_%7Bn%7D%5Crbrack%7C%20%3D%200

② n+1 个 n 维向量线性相关。

③ 若

math?formula=%5Calpha_%7B1%7D%2C%5Calpha_%7B2%7D%2C%5Ccdots%2C%5Calpha_%7Bs%7D线性无关,则添加分量后仍线性无关;或一组向量线性相关,去掉某些分量后仍线性相关。

3.有关向量组的线性表示

(1)

math?formula=%5Calpha_%7B1%7D%2C%5Calpha_%7B2%7D%2C%5Ccdots%2C%5Calpha_%7Bs%7D%E7%BA%BF%E6%80%A7%E7%9B%B8%E5%85%B3%20%5CLeftrightarrow 至少有一个向量可以用其余向量线性表示。

(2)

math?formula=%5Calpha_%7B1%7D%2C%5Calpha_%7B2%7D%2C%5Ccdots%2C%5Calpha_%7Bs%7D线性无关,

math?formula=%5Calpha_%7B1%7D%2C%5Calpha_%7B2%7D%2C%5Ccdots%2C%5Calpha_%7Bs%7D%20%EF%BC%8C%20%5Cbeta 线性相关

math?formula=%5CLeftrightarrow%5Cbeta 可以由

math?formula=%5Calpha_%7B1%7D%2C%5Calpha_%7B2%7D%2C%5Ccdots%2C%5Calpha_%7Bs%7D 唯一线性表示。

(3)

math?formula=%5Cbeta%E5%8F%AF%E4%BB%A5%E7%94%B1%5Calpha_%7B1%7D%2C%5Calpha_%7B2%7D%2C%5Ccdots%2C%5Calpha_%7Bs%7D线性表示

math?formula=%5CLeftrightarrow%20r(%5Calpha_%7B1%7D%2C%5Calpha_%7B2%7D%2C%5Ccdots%2C%5Calpha_%7Bs%7D)%20%3Dr(%5Calpha_%7B1%7D%2C%5Calpha_%7B2%7D%2C%5Ccdots%2C%5Calpha_%7Bs%7D%2C%5Cbeta)

4.向量组的秩与矩阵的秩之间的关系

math?formula=r(A_%7Bm%20%5Ctimes%20n%7D)%20%3Dr ,则 A 的秩 r(A) 与 A 的行列向量组的线性相关性关系为:

(1) 若

math?formula=r(A_%7Bm%20%5Ctimes%20n%7D)%20%3D%20r%20%3D%20m ,则 A 的行向量组线性无关。

(2) 若

math?formula=r(A_%7Bm%20%5Ctimes%20n%7D)%20%3D%20r%20%3C%20m ,则 A 的行向量组线性相关。

(3) 若

math?formula=r(A_%7Bm%20%5Ctimes%20n%7D)%20%3D%20r%20%3D%20n,则 A 的列向量组线性无关。

(4) 若

math?formula=r(A_%7Bm%20%5Ctimes%20n%7D)%20%3D%20r%20%3C%20n,则 A 的列向量组线性相关。

5.

math?formula=%5Cmathbf%7Bn%7D 维向量空间的基变换公式及过渡矩阵

math?formula=%5Calpha_%7B1%7D%2C%5Calpha_%7B2%7D%2C%5Ccdots%2C%5Calpha_%7Bn%7D%20%E4%B8%8E%20%5Cbeta_%7B1%7D%2C%5Cbeta_%7B2%7D%2C%5Ccdots%2C%5Cbeta_%7Bn%7D 是向量空间 V 的两组基,则基变换公式为:

math?formula=(%5Cbeta_%7B1%7D%2C%5Cbeta_%7B2%7D%2C%5Ccdots%2C%5Cbeta_%7Bn%7D)%20%3D%20(%5Calpha_%7B1%7D%2C%5Calpha_%7B2%7D%2C%5Ccdots%2C%5Calpha_%7Bn%7D)%5Cbegin%7Bbmatrix%7D%20c_%7B11%7D%26%20c_%7B12%7D%26%20%5Ccdots%20%26%20c_%7B1n%7D%20%5C%5C%20c_%7B21%7D%26%20c_%7B22%7D%26%5Ccdots%20%26%20c_%7B2n%7D%20%5C%5C%20%5Ccdots%20%26%20%5Ccdots%20%26%20%5Ccdots%20%26%20%5Ccdots%20%5C%5C%20c_%7Bn1%7D%26%20c_%7Bn2%7D%20%26%20%5Ccdots%20%26%20c_%7B%7Bnn%7D%7D%20%5C%5C%5Cend%7Bbmatrix%7D%20%3D%20(%5Calpha_%7B1%7D%2C%5Calpha_%7B2%7D%2C%5Ccdots%2C%5Calpha_%7Bn%7D)C

其中 C 是可逆矩阵,称为由基

math?formula=%5Calpha_%7B1%7D%2C%5Calpha_%7B2%7D%2C%5Ccdots%2C%5Calpha_%7Bn%7D%20%E5%88%B0%E5%9F%BA%20%5Cbeta_%7B1%7D%2C%5Cbeta_%7B2%7D%2C%5Ccdots%2C%5Cbeta_%7Bn%7D 的过渡矩阵。

6.坐标变换公式

若向量

math?formula=%5Cgamma 在基

math?formula=%5Calpha_%7B1%7D%2C%5Calpha_%7B2%7D%2C%5Ccdots%2C%5Calpha_%7Bn%7D 与基

math?formula=%5Cbeta_%7B1%7D%2C%5Cbeta_%7B2%7D%2C%5Ccdots%2C%5Cbeta_%7Bn%7D 的坐标分别是

math?formula=X%20%3D%20%7B(x_%7B1%7D%2Cx_%7B2%7D%2C%5Ccdots%2Cx_%7Bn%7D)%7D%5E%7BT%7D%20%EF%BC%8C%20Y%20%3D%20%5Cleft(%20y_%7B1%7D%2Cy_%7B2%7D%2C%5Ccdots%2Cy_%7Bn%7D%20%5Cright)%5E%7BT%7D 即:

math?formula=%5Cgamma%20%3Dx_%7B1%7D%5Calpha_%7B1%7D%20%2B%20x_%7B2%7D%5Calpha_%7B2%7D%20%2B%20%5Ccdots%20%2B%20x_%7Bn%7D%5Calpha_%7Bn%7D%20%3D%20y_%7B1%7D%5Cbeta_%7B1%7D%20%2By_%7B2%7D%5Cbeta_%7B2%7D%20%2B%20%5Ccdots%20%2B%20y_%7Bn%7D%5Cbeta_%7Bn%7D ,则向量坐标变换公式为

math?formula=X%20%3D%20CY%20%E6%88%96%20Y%20%3D%20C%5E%7B-%201%7DX,其中 C 是从基

math?formula=%5Calpha_%7B1%7D%2C%5Calpha_%7B2%7D%2C%5Ccdots%2C%5Calpha_%7Bn%7D 到基

math?formula=%5Cbeta_%7B1%7D%2C%5Cbeta_%7B2%7D%2C%5Ccdots%2C%5Cbeta_%7Bn%7D 的过渡矩阵。

7.向量的内积

math?formula=(%5Calpha%2C%5Cbeta)%20%3D%20a_%7B1%7Db_%7B1%7D%20%2B%20a_%7B2%7Db_%7B2%7D%20%2B%20%5Ccdots%20%2B%20a_%7Bn%7Db_%7Bn%7D%20%3D%20%5Calpha%5E%7BT%7D%5Cbeta%20%3D%20%5Cbeta%5E%7BT%7D%5Calpha

8.Schmidt正交化

math?formula=%5Calpha_%7B1%7D%2C%5Calpha_%7B2%7D%2C%5Ccdots%2C%5Calpha_%7Bs%7D 线性无关,则可构造

math?formula=%5Cbeta_%7B1%7D%2C%5Cbeta_%7B2%7D%2C%5Ccdots%2C%5Cbeta_%7Bs%7D 使其两两正交,且

math?formula=%5Cbeta_%7Bi%7D仅是

math?formula=%5Calpha_%7B1%7D%2C%5Calpha_%7B2%7D%2C%5Ccdots%2C%5Calpha_%7Bi%7D 的线性组合

math?formula=(i%3D%201%2C2%2C%5Ccdots%2Cn)%20%EF%BC%8C%E5%86%8D%E6%8A%8A%20%5Cbeta_%7Bi%7D 单位化,记

math?formula=%5Cgamma_%7Bi%7D%20%3D%5Cfrac%7B%5Cbeta_%7Bi%7D%7D%7B%5Cleft%7C%20%5Cbeta_%7Bi%7D%5Cright%7C%7D%20%EF%BC%8C%E5%88%99%20%5Cgamma_%7B1%7D%2C%5Cgamma_%7B2%7D%2C%5Ccdots%2C%5Cgamma_%7Bi%7D是规范正交向量组。

其中

math?formula=%5Cbeta_%7B1%7D%20%3D%20%5Calpha_%7B1%7D%20%EF%BC%8C%20%5Cbeta_%7B2%7D%20%3D%20%5Calpha_%7B2%7D%20-%5Cfrac%7B(%5Calpha_%7B2%7D%2C%5Cbeta_%7B1%7D)%7D%7B(%5Cbeta_%7B1%7D%2C%5Cbeta_%7B1%7D)%7D%5Cbeta_%7B1%7D%20%EF%BC%8C%20%5Cbeta_%7B3%7D%20%3D%5Calpha_%7B3%7D%20-%20%5Cfrac%7B(%5Calpha_%7B3%7D%2C%5Cbeta_%7B1%7D)%7D%7B(%5Cbeta_%7B1%7D%2C%5Cbeta_%7B1%7D)%7D%5Cbeta_%7B1%7D%20-%5Cfrac%7B(%5Calpha_%7B3%7D%2C%5Cbeta_%7B2%7D)%7D%7B(%5Cbeta_%7B2%7D%2C%5Cbeta_%7B2%7D)%7D%5Cbeta_%7B2%7D

............

math?formula=%5Cbeta_%7Bs%7D%20%3D%20%5Calpha_%7Bs%7D%20-%20%5Cfrac%7B(%5Calpha_%7Bs%7D%2C%5Cbeta_%7B1%7D)%7D%7B(%5Cbeta_%7B1%7D%2C%5Cbeta_%7B1%7D)%7D%5Cbeta_%7B1%7D%20-%20%5Cfrac%7B(%5Calpha_%7Bs%7D%2C%5Cbeta_%7B2%7D)%7D%7B(%5Cbeta_%7B2%7D%2C%5Cbeta_%7B2%7D)%7D%5Cbeta_%7B2%7D%20-%20%5Ccdots%20-%20%5Cfrac%7B(%5Calpha_%7Bs%7D%2C%5Cbeta_%7Bs%20-%201%7D)%7D%7B(%5Cbeta_%7Bs%20-%201%7D%2C%5Cbeta_%7Bs%20-%201%7D)%7D%5Cbeta_%7Bs%20-%201%7D

9.正交基及规范正交基

向量空间一组基中的向量如果两两正交,就称为正交基;若正交基中每个向量都是单位向量,就称其为规范正交基。

线性方程组

1.克莱姆法则

线性方程组

math?formula=%5Cbegin%7Bcases%7D%20a_%7B11%7Dx_%7B1%7D%20%2B%20a_%7B12%7Dx_%7B2%7D%20%2B%20%5Ccdots%20%2Ba_%7B1n%7Dx_%7Bn%7D%20%3D%20b_%7B1%7D%20%5C%5C%20a_%7B21%7Dx_%7B1%7D%20%2B%20a_%7B22%7Dx_%7B2%7D%20%2B%20%5Ccdots%20%2B%20a_%7B2n%7Dx_%7Bn%7D%20%3Db_%7B2%7D%20%5C%5C%20%5Cquad%5Ccdots%5Ccdots%5Ccdots%5Ccdots%5Ccdots%5Ccdots%5Ccdots%5Ccdots%5Ccdots%20%5C%5C%20a_%7Bn1%7Dx_%7B1%7D%20%2B%20a_%7Bn2%7Dx_%7B2%7D%20%2B%20%5Ccdots%20%2B%20a_%7B%7Bnn%7D%7Dx_%7Bn%7D%20%3D%20b_%7Bn%7D%20%5C%5C%20%5Cend%7Bcases%7D ,如果系数行列式

math?formula=D%20%3D%20%5Cleft%7C%20A%20%5Cright%7C%20%5Cneq%200

则方程组有唯一解,

math?formula=x_%7B1%7D%20%3D%20%5Cfrac%7BD_%7B1%7D%7D%7BD%7D%2Cx_%7B2%7D%20%3D%20%5Cfrac%7BD_%7B2%7D%7D%7BD%7D%2C%5Ccdots%2Cx_%7Bn%7D%20%3D%5Cfrac%7BD_%7Bn%7D%7D%7BD%7D ,其中

math?formula=D_%7Bj%7D是把 D 中第 j 列元素换成方程组右端的常数列所得的行列式。

2.n 阶矩阵 A 可逆

math?formula=r(A_%7Bm%20%5Ctimes%20n%7D)%20%3D%20m只有零解。

math?formula=%5CLeftrightarrow%5Cforall%20b%2CAx%20%3D%20b总有唯一解,一般地,

math?formula=r(A_%7Bm%20%5Ctimes%20n%7D)%20%3D%20n%20%5CLeftrightarrow%20Ax%3D%200 只有零解。

3.非奇次线性方程组有解的充分必要条件,线性方程组解的性质和解的结构

(1) 设 A 为

math?formula=m%20%5Ctimes%20n 矩阵,若

math?formula=r(A_%7Bm%20%5Ctimes%20n%7D)%20%3D%20m,则对

math?formula=Ax%20%3Db而言必有

math?formula=r(A)%20%3D%20r(A%20%5Cvdots%20b)%20%3D%20m,从而

math?formula=Ax%20%3Db 有解。

(2) 设

math?formula=x_%7B1%7D%2Cx_%7B2%7D%2C%5Ccdots%20x_%7Bs%7D

math?formula=Ax%20%3D%20b 的解,则

math?formula=k_%7B1%7Dx_%7B1%7D%20%2B%20k_%7B2%7Dx_%7B2%7D%5Ccdots%20%2B%20k_%7Bs%7Dx_%7Bs%7D

math?formula=k_%7B1%7D%20%2B%20k_%7B2%7D%20%2B%20%5Ccdots%20%2B%20k_%7Bs%7D%20%3D%201时仍为

math?formula=Ax%20%3Db的解;但当

math?formula=k_%7B1%7D%20%2B%20k_%7B2%7D%20%2B%20%5Ccdots%20%2B%20k_%7Bs%7D%20%3D%200 时,则为

math?formula=Ax%20%3D0的解。特别

math?formula=%5Cfrac%7Bx_%7B1%7D%20%2B%20x_%7B2%7D%7D%7B2%7D

math?formula=Ax%20%3D%20b的解;

math?formula=2x_%7B3%7D%20-%20(x_%7B1%7D%20%2Bx_%7B2%7D)

math?formula=Ax%20%3D0 的解。

(3) 非齐次线性方程组

math?formula=%7BAx%7D%20%3D%20b%20%E6%97%A0%E8%A7%A3%20%5CLeftrightarrow%20r(A)%20%2B%201%20%3Dr(%5Coverline%7BA%7D)%20%5CLeftrightarrow%20b不能由 A 的列向量

math?formula=%5Calpha_%7B1%7D%2C%5Calpha_%7B2%7D%2C%5Ccdots%2C%5Calpha_%7Bn%7D 线性表示。

4.奇次线性方程组的基础解系和通解,解空间,非奇次线性方程组的通解

(1) 齐次方程组

math?formula=%7BAx%7D%20%3D%200恒有解(必有零解)。当有非零解时,由于解向量的任意线性组合仍是该齐次方程组的解向量,因此

math?formula=%7BAx%7D%20%3D%200 的全体解向量构成一个向量空间,称为该方程组的解空间,解空间的维数是

math?formula=n%20-%20r(A) ,解空间的一组基称为齐次方程组的基础解系。

(2)

math?formula=%5Ceta_%7B1%7D%2C%5Ceta_%7B2%7D%2C%5Ccdots%2C%5Ceta_%7Bt%7D%20%E6%98%AF%20%7BAx%7D%20%3D%200 的基础解系,即:

math?formula=%5Ceta_%7B1%7D%2C%5Ceta_%7B2%7D%2C%5Ccdots%2C%5Ceta_%7Bt%7D

math?formula=%7BAx%7D%20%3D%200的解;

math?formula=%5Ceta_%7B1%7D%2C%5Ceta_%7B2%7D%2C%5Ccdots%2C%5Ceta_%7Bt%7D线性无关;

math?formula=%7BAx%7D%20%3D%200 的任一解都可以由

math?formula=%5Ceta_%7B1%7D%2C%5Ceta_%7B2%7D%2C%5Ccdots%2C%5Ceta_%7Bt%7D线性表出。

math?formula=k_%7B1%7D%5Ceta_%7B1%7D%20%2B%20k_%7B2%7D%5Ceta_%7B2%7D%20%2B%20%5Ccdots%20%2B%20k_%7Bt%7D%5Ceta_%7Bt%7D

math?formula=%7BAx%7D%20%3D%200的通解,其中

math?formula=k_%7B1%7D%2Ck_%7B2%7D%2C%5Ccdots%2Ck_%7Bt%7D 是任意常数。

矩阵的特征值和特征向量

1.矩阵的特征值和特征向量的概念及性质

(1) 设

math?formula=%5Clambda 是 A 的一个特征值,则

math?formula=%7BkA%7D%2C%7BaA%7D%20%2B%20%7BbE%7D%2CA%5E%7B2%7D%2CA%5E%7Bm%7D%2Cf(A)%2CA%5E%7BT%7D%2CA%5E%7B-%201%7D%2CA%5E%7B*%7D 有一个特征值分别为

math?formula=%7Bk%CE%BB%7D%2C%7Ba%CE%BB%7D%20%2B%20b%2C%5Clambda%5E%7B2%7D%2C%5Clambda%5E%7Bm%7D%2Cf(%5Clambda)%2C%5Clambda%2C%5Clambda%5E%7B-%201%7D%2C%5Cfrac%7B%7CA%7C%7D%7B%5Clambda%7D, 且对应特征向量相同(

math?formula=A%5E%7BT%7D 例外)。

(2)若

math?formula=%5Clambda_%7B1%7D%2C%5Clambda_%7B2%7D%2C%5Ccdots%2C%5Clambda_%7Bn%7D 为 A 的 n 个特征值,则

math?formula=%5Csum_%7Bi%3D%201%7D%5E%7Bn%7D%5Clambda_%7Bi%7D%20%3D%20%5Csum_%7Bi%20%3D%201%7D%5E%7Bn%7Da_%7B%7Bii%7D%7D%2C%5Cprod_%7Bi%20%3D%201%7D%5E%7Bn%7D%5Clambda_%7Bi%7D%3D%20%7CA%7C,从而

math?formula=%7CA%7C%20%5Cneq%200%20%5CLeftrightarrow%20A 没有特征值。

(3)设

math?formula=%5Clambda_%7B1%7D%2C%5Clambda_%7B2%7D%2C%5Ccdots%2C%5Clambda_%7Bs%7D 为 A 的 s 个特征值,对应特征向量为

math?formula=%5Calpha_%7B1%7D%2C%5Calpha_%7B2%7D%2C%5Ccdots%2C%5Calpha_%7Bs%7D

若:

math?formula=%5Calpha%20%3D%20k_%7B1%7D%5Calpha_%7B1%7D%20%2B%20k_%7B2%7D%5Calpha_%7B2%7D%20%2B%20%5Ccdots%20%2B%20k_%7Bs%7D%5Calpha_%7Bs%7D,

则:

math?formula=A%5E%7Bn%7D%5Calpha%20%3D%20k_%7B1%7DA%5E%7Bn%7D%5Calpha_%7B1%7D%20%2B%20k_%7B2%7DA%5E%7Bn%7D%5Calpha_%7B2%7D%20%2B%20%5Ccdots%20%2Bk_%7Bs%7DA%5E%7Bn%7D%5Calpha_%7Bs%7D%20%3D%20k_%7B1%7D%5Clambda_%7B1%7D%5E%7Bn%7D%5Calpha_%7B1%7D%20%2Bk_%7B2%7D%5Clambda_%7B2%7D%5E%7Bn%7D%5Calpha_%7B2%7D%20%2B%20%5Ccdots%20k_%7Bs%7D%5Clambda_%7Bs%7D%5E%7Bn%7D%5Calpha_%7Bs%7D

2.相似变换、相似矩阵的概念及性质

(1) 若

math?formula=A%20%5Csim%20B ,则

1)

math?formula=A%5E%7BT%7D%20%5Csim%20B%5E%7BT%7D%2CA%5E%7B-%201%7D%20%5Csim%20B%5E%7B-%201%7D%2C%2CA%5E%7B*%7D%20%5Csim%20B%5E%7B*%7D

math?formula=%7CA%7C%20%3D%20%7CB%7C%2C%5Csum_%7Bi%20%3D%201%7D%5E%7Bn%7DA_%7B%7Bii%7D%7D%20%3D%20%5Csum_%7Bi%20%3D1%7D%5E%7Bn%7Db_%7B%7Bii%7D%7D%2Cr(A)%20%3D%20r(B)

math?formula=%7C%5Clambda%20E%20-%20A%7C%20%3D%20%7C%5Clambda%20E%20-%20B%7C%20%EF%BC%8C%E5%AF%B9%20%5Cforall%5Clambda 成立

3.矩阵可相似对角化的充分必要条件

(1)设 A 为 n 阶方阵,则 A 可对角化

math?formula=%5CLeftrightarrow对每个

math?formula=k_%7Bi%7D重根特征值

math?formula=%5Clambda_%7Bi%7D,有

math?formula=n-r(%5Clambda_%7Bi%7DE%20-%20A)%20%3D%20k_%7Bi%7D

(2) 设 A 可对角化,则由

math?formula=P%5E%7B-%201%7D%7BAP%7D%20%3D%20%5CLambda, 有

math?formula=A%20%3D%20%7BP%CE%9B%7DP%5E%7B-1%7D,从而

math?formula=A%5E%7Bn%7D%20%3D%20P%5CLambda%5E%7Bn%7DP%5E%7B-%201%7D

(3) 重要结论

math?formula=A%20%5Csim%20B%2CC%20%5Csim%20D,则

math?formula=%5Cbegin%7Bbmatrix%7D%20A%20%26%20O%20%5C%5C%20O%20%26%20C%20%5C%5C%5Cend%7Bbmatrix%7D%20%5Csim%20%5Cbegin%7Bbmatrix%7D%20B%20%26%20O%20%5C%5C%20O%20%26%20D%20%5C%5C%5Cend%7Bbmatrix%7D

math?formula=A%20%5Csim%20B%20%EF%BC%8C%E5%88%99%20f(A)%20%5Csim%20f(B)%2C%5Cleft%7C%20f(A)%20%5Cright%7C%20%5Csim%20%5Cleft%7C%20f(B)%5Cright%7C,其中

math?formula=f(A) 为关于 n 阶方阵 A 的多项式。

若 A 为可对角化矩阵,则其非零特征值的个数(重根重复计算)=秩( A )

4.实对称矩阵的特征值、特征向量及相似对角阵

(1)相似矩阵:设 A,B 为两个 n 阶方阵,如果存在一个可逆矩阵 P ,使得

math?formula=B%20%3DP%5E%7B-%201%7D%7BAP%7D成立,则称矩阵 A 与 B 相似,记为 A \sim B 。

(2)相似矩阵的性质:如果 A \sim B 则有:

math?formula=A%5E%7BT%7D%20%5Csim%20B%5E%7BT%7D

math?formula=A%5E%7B-%201%7D%20%5Csim%20B%5E%7B-%201%7D(若 A , B 均可逆)

3)

math?formula=A%5E%7Bk%7D%20%5Csim%20B%5E%7Bk%7D ( k 为正整数)

4)

math?formula=%5Cleft%7C%20%7B%CE%BBE%7D%20-%20A%20%5Cright%7C%20%3D%20%5Cleft%7C%20%7B%CE%BBE%7D%20-%20B%20%5Cright%7C,从而 A,B 有相同的特征值

math?formula=%5Cleft%7C%20A%20%5Cright%7C%20%3D%20%5Cleft%7C%20B%20%5Cright%7C ,从而 A,B 同时可逆或者不可逆

math?formula=%5Cleft(%20A%20%5Cright)%20%3D%20%E7%A7%A9%20%5Cleft(%20B%20%5Cright)%2C%5Cleft%7C%20%7B%CE%BBE%7D%20-%20A%20%5Cright%7C%20%3D%5Cleft%7C%20%7B%CE%BBE%7D%20-%20B%20%5Cright%7C, A,B 不一定相似

二次型

1.

math?formula=%5Cmathbf%7Bn%7D个变量

math?formula=%5Cmathbf%7Bx%7D_%7B%5Cmathbf%7B1%7D%7D%5Cmathbf%7B%2C%7D%5Cmathbf%7Bx%7D_%7B%5Cmathbf%7B2%7D%7D%5Cmathbf%7B%2C%5Ccdots%2C%7D%5Cmathbf%7Bx%7D_%7B%5Cmathbf%7Bn%7D%7D的二次齐次函数

math?formula=f(x_%7B1%7D%2Cx_%7B2%7D%2C%5Ccdots%2Cx_%7Bn%7D)%20%3D%20%5Csum_%7Bi%20%3D%201%7D%5E%7Bn%7D%7B%5Csum_%7Bj%20%3D1%7D%5E%7Bn%7D%7Ba_%7B%7Bij%7D%7Dx_%7Bi%7Dy_%7Bj%7D%7D%7D%20%EF%BC%8C%E5%85%B6%E4%B8%AD%20a_%7B%7Bij%7D%7D%20%3D%20a_%7B%7Bji%7D%7D(i%2Cj%20%3D1%2C2%2C%5Ccdots%2Cn),称为 n 元二次型,简称二次型. 若令

math?formula=x%20%3D%20%5C%20%5Cbegin%7Bbmatrix%7Dx_%7B1%7D%20%5C%5C%20x_%7B1%7D%20%5C%5C%20%5Cvdots%20%5C%5C%20x_%7Bn%7D%20%5C%5C%20%5Cend%7Bbmatrix%7D%2CA%20%3D%20%5Cbegin%7Bbmatrix%7D%20a_%7B11%7D%26%20a_%7B12%7D%26%20%5Ccdots%20%26%20a_%7B1n%7D%20%5C%5C%20a_%7B21%7D%26%20a_%7B22%7D%26%20%5Ccdots%20%26%20a_%7B2n%7D%20%5C%5C%20%5Ccdots%20%26%5Ccdots%20%26%5Ccdots%20%26%5Ccdots%20%5C%5C%20a_%7Bn1%7D%26%20a_%7Bn2%7D%20%26%20%5Ccdots%20%26%20a_%7B%7Bnn%7D%7D%20%5C%5C%5Cend%7Bbmatrix%7D,这二次型 f 可改写成矩阵向量形式

math?formula=f%20%3Dx%5E%7BT%7D%7BAx%7D。其中 A 称为二次型矩阵,因为

math?formula=a_%7B%7Bij%7D%7D%20%3Da_%7B%7Bji%7D%7D(i%2Cj%20%3D1%2C2%2C%5Ccdots%2Cn) ,所以二次型矩阵均为对称矩阵,且二次型与对称矩阵一一对应,并把矩阵 A 的秩称为二次型的秩。

2.惯性定理,二次型的标准形和规范形

(1) 惯性定理

对于任一二次型,不论选取怎样的合同变换使它化为仅含平方项的标准型,其正负惯性指数与所选变换无关,这就是所谓的惯性定理。

(2) 标准形

二次型

math?formula=f%20%3D%20%5Cleft(%20x_%7B1%7D%2Cx_%7B2%7D%2C%5Ccdots%2Cx_%7Bn%7D%20%5Cright)%20%3Dx%5E%7BT%7D%7BAx%7D%20%E7%BB%8F%E8%BF%87%E5%90%88%E5%90%8C%E5%8F%98%E6%8D%A2%20x%20%3D%20%7BCy%7D%20%E5%8C%96%E4%B8%BA%20f%20%3D%20x%5E%7BT%7D%7BAx%7D%20%3Dy%5E%7BT%7DC%5E%7BT%7D%7BAC%7D%20y%20%3D%20%5Csum_%7Bi%20%3D%201%7D%5E%7Br%7D%7Bd_%7Bi%7Dy_%7Bi%7D%5E%7B2%7D%7D 称为

math?formula=f(r%20%5Cleq%20n)的标准形。在一般的数域内,二次型的标准形不是唯一的,与所作的合同变换有关,但系数不为零的平方项的个数由 r(A) 唯一确定。

(3) 规范形

任一实二次型 f 都可经过合同变换化为规范形 f =

math?formula=z_%7B1%7D%5E%7B2%7D%20%2B%20z_%7B2%7D%5E%7B2%7D%20%2B%20%5Ccdots%20z_%7Bp%7D%5E%7B2%7D%20-%20z_%7Bp%20%2B%201%7D%5E%7B2%7D%20-%20%5Ccdots%20-z_%7Br%7D%5E%7B2%7D ,其中 r 为 A 的秩, p 为正惯性指数, r-p 为负惯性指数,且规范型唯一。

3.用正交变换和配方法化二次型为标准形,二次型及其矩阵的正定性

设 A 正定

math?formula=%5CRightarrow%20%7BkA%7D(k%20%3E%200)%2CA%5E%7BT%7D%2CA%5E%7B-%201%7D%2CA%5E%7B*%7D%20%E6%AD%A3%E5%AE%9A%EF%BC%9B%20%7CA%7C%20%3E0, A 可逆;

math?formula=a_%7B%7Bii%7D%7D%20%3E%200,且

math?formula=%7CA_%7B%7Bii%7D%7D%7C%20%3E%200

A , B 正定

math?formula=%5CRightarrow%20A%20%2BB 正定,但

math?formula=%7BAB%7D%20%EF%BC%8C%20%7BBA%7D 不一定正定。

A 正定

math?formula=%5CLeftrightarrow%20f(x)%20%3D%20x%5E%7BT%7D%7BAx%7D%20%3E%200%2C%5Cforall%20x%20%5Cneq%200

math?formula=%5CLeftrightarrow%20A 的各阶顺序主子式全大于零

math?formula=%5CLeftrightarrow%20A 的所有特征值大于零

math?formula=%5CLeftrightarrow%20A 的正惯性指数为 n

math?formula=%5CLeftrightarrow 存在可逆阵 P 使

math?formula=A%20%3D%20P%5E%7BT%7DP

math?formula=%5CLeftrightarrow 存在正交矩阵 Q ,使

math?formula=Q%5E%7BT%7D%7BAQ%7D%20%3D%20Q%5E%7B-%201%7D%7BAQ%7D%20%3D%5Cbegin%7Bpmatrix%7D%20%5Clambda_%7B1%7D%20%26%20%26%20%5C%5C%20%5Cbegin%7Bmatrix%7D%20%26%20%5C%5C%20%26%20%5C%5C%20%5Cend%7Bmatrix%7D%20%26%5Cddots%20%26%20%5C%5C%20%26%20%26%20%5Clambda_%7Bn%7D%20%5C%5C%20%5Cend%7Bpmatrix%7D,

其中

math?formula=%5Clambda_%7Bi%7D%20%3E%200%2Ci%20%3D%201%2C2%2C%5Ccdots%2Cn%20%E3%80%82%E6%AD%A3%E5%AE%9A%20%5CRightarrow%20%7BkA%7D(k%20%3E0)%2CA%5E%7BT%7D%2CA%5E%7B-%201%7D%2CA%5E%7B*%7D 正定;

math?formula=%7CA%7C%20%3E%200,A 可逆;

math?formula=a_%7B%7Bii%7D%7D%20%3E0,且

math?formula=%7CA_%7B%7Bii%7D%7D%7C%20%3E%200

概率论和数理统计

随机事件和概率

1.事件的关系与运算

(1) 子事件:

math?formula=A%20%5Csubset%20B,若 A 发生,则 B 发生。

(2) 相等事件: A = B ,即

math?formula=A%20%5Csubset%20B ,且

math?formula=B%20%5Csubset%20A

(3) 和事件:

math?formula=A%5Cbigcup%20B (或 A + B ), A 与 B 中至少有一个发生。

(4) 差事件: A - B , A 发生但 B 不发生。

(5) 积事件:

math?formula=A%5Cbigcap%20B(或 {AB} ), A 与 B 同时发生。

(6) 互斥事件(互不相容):

math?formula=A%5Cbigcap%20B%3D%5Cvarnothing

(7) 互逆事件(对立事件):

math?formula=A%5Cbigcap%20B%3D%5Cvarnothing%20%2CA%5Cbigcup%20B%3D%5COmega%20%2CA%3D%5Cbar%7BB%7D%2CB%3D%5Cbar%7BA%7D

2.运算律

(1) 交换律:

math?formula=A%5Cbigcup%20B%3DB%5Cbigcup%20A%2CA%5Cbigcap%20B%3DB%5Cbigcap%20A

(2) 结合律:

math?formula=(A%5Cbigcup%20B)%5Cbigcup%20C%3DA%5Cbigcup%20(B%5Cbigcup%20C)

math?formula=(A%5Cbigcap%20B)%5Cbigcap%20C%3DA%5Cbigcap%20(B%5Cbigcap%20C)

(3) 分配律:

math?formula=(A%5Cbigcup%20B)%5Cbigcap%20C%3D(A%5Cbigcap%20C)%5Cbigcup%20(B%5Cbigcap%20C)

3.德

math?formula=%5Ccenterdot 摩根律

math?formula=%5Coverline%7BA%5Cbigcup%20B%7D%3D%5Cbar%7BA%7D%5Cbigcap%20%5Cbar%7BB%7D%20%5Coverline%7BA%5Cbigcap%20B%7D%3D%5Cbar%7BA%7D%5Cbigcup%20%5Cbar%7BB%7D

4.完全事件组

math?formula=%7B%7BA%7D_%7B1%7D%7D%7B%7BA%7D_%7B2%7D%7D%5Ccdots%20%7B%7BA%7D_%7Bn%7D%7D 两两互斥,且和事件为必然事件,即

math?formula=%7B%7BA%7D_%7Bi%7D%7D%5Cbigcap%20%7B%7BA%7D_%7Bj%7D%7D%3D%5Cvarnothing%2C%20i%5Cne%20j%20%2C%5Cunderset%7Bi%3D1%7D%7B%5Coverset%7Bn%7D%7B%5Cmathop%20%5Cbigcup%20%7D%7D%5C%2C%3D%5COmega

5.概率的基本公式

(1)条件概率:

math?formula=P(B%7CA)%3D%5Cfrac%7BP(AB)%7D%7BP(A)%7D ,表示 A 发生的条件下, B 发生的概率。

(2)全概率公式:

math?formula=P(A)%3D%5Csum%5Climits_%7Bi%3D1%7D%5E%7Bn%7D%7BP(A%7C%7B%7BB%7D_%7Bi%7D%7D)P(%7B%7BB%7D_%7Bi%7D%7D)%2C%7B%7BB%7D_%7Bi%7D%7D%7B%7BB%7D_%7Bj%7D%7D%7D%3D%5Cvarnothing%20%2Ci%5Cne%20j%2C%5Cunderset%7Bi%3D1%7D%7B%5Coverset%7Bn%7D%7B%5Cmathop%7B%5Cbigcup%20%7D%7D%7D%5C%2C%7B%7BB%7D_%7Bi%7D%7D%3D%5COmega

(3) Bayes公式:

math?formula=P(%7B%7BB%7D_%7Bj%7D%7D%7CA)%3D%5Cfrac%7BP(A%7C%7B%7BB%7D_%7Bj%7D%7D)P(%7B%7BB%7D_%7Bj%7D%7D)%7D%7B%5Csum%5Climits_%7Bi%3D1%7D%5E%7Bn%7D%7BP(A%7C%7B%7BB%7D_%7Bi%7D%7D)P(%7B%7BB%7D_%7Bi%7D%7D)%7D%7D%2Cj%3D1%2C2%2C%5Ccdots ,n

注:上述公式中事件

math?formula=%7B%7BB%7D_%7Bi%7D%7D 的个数可为可列个。

(4)乘法公式:

math?formula=P(%7B%7BA%7D_%7B1%7D%7D%7B%7BA%7D_%7B2%7D%7D)%3DP(%7B%7BA%7D_%7B1%7D%7D)P(%7B%7BA%7D_%7B2%7D%7D%7C%7B%7BA%7D_%7B1%7D%7D)%3DP(%7B%7BA%7D_%7B2%7D%7D)P(%7B%7BA%7D_%7B1%7D%7D%7C%7B%7BA%7D_%7B2%7D%7D)

math?formula=P(%7B%7BA%7D_%7B1%7D%7D%7B%7BA%7D_%7B2%7D%7D%5Ccdots%20%7B%7BA%7D_%7Bn%7D%7D)%3DP(%7B%7BA%7D_%7B1%7D%7D)P(%7B%7BA%7D_%7B2%7D%7D%7C%7B%7BA%7D_%7B1%7D%7D)P(%7B%7BA%7D_%7B3%7D%7D%7C%7B%7BA%7D_%7B1%7D%7D%7B%7BA%7D_%7B2%7D%7D)%5Ccdots%20P(%7B%7BA%7D_%7Bn%7D%7D%7C%7B%7BA%7D_%7B1%7D%7D%7B%7BA%7D_%7B2%7D%7D%5Ccdots%20%7B%7BA%7D_%7Bn-1%7D%7D)

6.事件的独立性

(1) A 与 B 相互独立

math?formula=%5CLeftrightarrow%20P(AB)%3DP(A)P(B)

(2) A , B , C 两两独立

math?formula=%5CLeftrightarrow%20P(AB)%3DP(A)P(B)%20%3B%20P(BC)%3DP(B)P(C)%20%3B%20P(AC)%3DP(A)P(C)%20%3B

(3) A , B , C 相互独立

math?formula=%5CLeftrightarrow%20P(AB)%3DP(A)P(B)%20%3B%20P(BC)%3DP(B)P(C)%20%3B%20P(AC)%3DP(A)P(C)%20%3B%20P(ABC)%3DP(A)P(B)P(C)

7.独立重复试验

将某试验独立重复 n 次,若每次实验中事件 A 发生的概率为 p ,则 n 次试验中 A 发生 k 次的概率为:

math?formula=P(X%3Dk)%3DC_%7Bn%7D%5E%7Bk%7D%7B%7Bp%7D%5E%7Bk%7D%7D%7B%7B(1-p)%7D%5E%7Bn-k%7D%7D

8.重要公式与结论

(1)

math?formula=P(%5Cbar%7BA%7D)%3D1-P(A)

(2)

math?formula=P(A%5Cbigcup%20B)%3DP(A)%2BP(B)-P(AB)P(A%5Cbigcup%20B%5Cbigcup%20C)%3DP(A)%2BP(B)%2BP(C)-P(AB)-P(BC)-P(AC)%2BP(ABC)

(3)

math?formula=P(A-B)%3DP(A)-P(AB)

(4)

math?formula=P(A%5Cbar%7BB%7D)%3DP(A)-P(AB)%2CP(A)%3DP(AB)%2BP(A%5Cbar%7BB%7D)%20%2C%20P(A%5Cbigcup%20B)%3DP(A)%2BP(%5Cbar%7BA%7DB)%3DP(AB)%2BP(A%5Cbar%7BB%7D)%2BP(%5Cbar%7BA%7DB)

(5)条件概率

math?formula=P(%5Ccenterdot%20%7CB) 满足概率的所有性质, 例如:.

math?formula=P(%7B%7B%5Cbar%7BA%7D%7D_%7B1%7D%7D%7CB)%3D1-P(%7B%7BA%7D_%7B1%7D%7D%7CB)

math?formula=P(%7B%7BA%7D_%7B1%7D%7D%5Cbigcup%20%7B%7BA%7D_%7B2%7D%7D%7CB)%3DP(%7B%7BA%7D_%7B1%7D%7D%7CB)%2BP(%7B%7BA%7D_%7B2%7D%7D%7CB)-P(%7B%7BA%7D_%7B1%7D%7D%7B%7BA%7D_%7B2%7D%7D%7CB)%20P(%7B%7BA%7D_%7B1%7D%7D%7B%7BA%7D_%7B2%7D%7D%7CB)%3DP(%7B%7BA%7D_%7B1%7D%7D%7CB)P(%7B%7BA%7D_%7B2%7D%7D%7C%7B%7BA%7D_%7B1%7D%7DB)

(6)若

math?formula=%7B%7BA%7D_%7B1%7D%7D%2C%7B%7BA%7D_%7B2%7D%7D%2C%5Ccdots%20%2C%7B%7BA%7D_%7Bn%7D%7D 相互独立,则

math?formula=P(%5Cbigcap%5Climits_%7Bi%3D1%7D%5E%7Bn%7D%7B%7B%7BA%7D_%7Bi%7D%7D%7D)%3D%5Cprod%5Climits_%7Bi%3D1%7D%5E%7Bn%7D%7BP(%7B%7BA%7D_%7Bi%7D%7D)%7D%20%2CP(%5Cbigcup%5Climits_%7Bi%3D1%7D%5E%7Bn%7D%7B%7B%7BA%7D_%7Bi%7D%7D%7D)%3D%5Cprod%5Climits_%7Bi%3D1%7D%5E%7Bn%7D%7B(1-P(%7B%7BA%7D_%7Bi%7D%7D))%7D

(7)互斥、互逆与独立性之间的关系: A 与 B 互逆

math?formula=%5CRightarrowA 与 B 互斥,但反之不成立, A 与 B 互斥(或互逆)且均非零概率事件

math?formula=%5CRightarrow%20A 与 B 不独立。

(8)若

math?formula=%7B%7BA%7D_%7B1%7D%7D%2C%7B%7BA%7D_%7B2%7D%7D%2C%5Ccdots%20%2C%7B%7BA%7D_%7Bm%7D%7D%2C%7B%7BB%7D_%7B1%7D%7D%2C%7B%7BB%7D_%7B2%7D%7D%2C%5Ccdots%20%2C%7B%7BB%7D_%7Bn%7D%7D相互独立,则

math?formula=f(%7B%7BA%7D_%7B1%7D%7D%2C%7B%7BA%7D_%7B2%7D%7D%2C%5Ccdots%20%2C%7B%7BA%7D_%7Bm%7D%7D)%20%E4%B8%8E%20g(%7B%7BB%7D_%7B1%7D%7D%2C%7B%7BB%7D_%7B2%7D%7D%2C%5Ccdots%20%2C%7B%7BB%7D_%7Bn%7D%7D)也相互独立,其中

math?formula=f(%5Ccenterdot%20)%2Cg(%5Ccenterdot%20) 分别表示对相应事件做任意事件运算后所得的事件,另外,概率为1(或0)的事件与任何事件相互独立.

随机变量及其概率分布

1.随机变量及概率分布

取值带有随机性的变量,严格地说是定义在样本空间上,取值于实数的函数称为随机变量,概率分布通常指分布函数或分布律

2.分布函数的概念与性质

定义:

math?formula=F(x)%20%3D%20P(X%20%5Cleq%20x)%2C%20-%20%5Cinfty%20%3C%20x%20%3C%20%2B%20%5Cinfty

性质:

(1)

math?formula=0%20%5Cleq%20F(x)%20%5Cleq%201

(2)

math?formula=F(x) 单调不减

(3) 右连续

math?formula=F(x%20%2B%200)%20%3D%20F(x)

(4)

math?formula=F(%20-%20%5Cinfty)%20%3D%200%2CF(%20%2B%20%5Cinfty)%20%3D%201

3.离散型随机变量的概率分布

math?formula=P(X%20%3D%20x_%7Bi%7D)%20%3D%20p_%7Bi%7D%2Ci%20%3D%201%2C2%2C%5Ccdots%2Cn%2C%5Ccdots%5Cquad%5Cquad%20p_%7Bi%7D%20%5Cgeq%200%2C%5Csum_%7Bi%20%3D1%7D%5E%7B%5Cinfty%7Dp_%7Bi%7D%20%3D%201

4.连续型随机变量的概率密度

概率密度 f(x) ;非负可积,且:

(1)

math?formula=f(x)%20%5Cgeq%200

(2)

math?formula=%5Cint_%7B-%20%5Cinfty%7D%5E%7B%2B%5Cinfty%7D%7Bf(x)%7Bdx%7D%20%3D%201%7D

(3) x 为 f(x) 的连续点,则:

math?formula=f(x)%20%3D%20F'(x) 分布函数

math?formula=F(x)%20%3D%20%5Cint_%7B-%20%5Cinfty%7D%5E%7Bx%7D%7Bf(t)%7Bdt%7D%7D

5.常见分布

(1) 0-1分布:

math?formula=P(X%20%3D%20k)%20%3D%20p%5E%7Bk%7D%7B(1%20-%20p)%7D%5E%7B1%20-%20k%7D%2Ck%20%3D%200%2C1

(2) 二项分布:

math?formula=B(n%2Cp)%20%EF%BC%9A%20P(X%20%3D%20k)%20%3D%20C_%7Bn%7D%5E%7Bk%7Dp%5E%7Bk%7D%7B(1%20-%20p)%7D%5E%7Bn%20-%20k%7D%2Ck%20%3D0%2C1%2C%5Ccdots%2Cn

(3) Poisson分布:

math?formula=p(%5Clambda)%20%EF%BC%9A%20P(X%20%3D%20k)%20%3D%20%5Cfrac%7B%5Clambda%5E%7Bk%7D%7D%7Bk!%7De%5E%7B-%5Clambda%7D%2C%5Clambda%20%3E%200%2Ck%20%3D%200%2C1%2C2%5Ccdots

(4) 均匀分布 U(a,b) :

math?formula=f(x)%20%3D%20%5C%7B%20%5Cbegin%7Bmatrix%7D%20%26%20%5Cfrac%7B1%7D%7Bb%20-%20a%7D%2Ca%20%3C%20x%3C%20b%20%5C%5C%20%26%200%2C%20%5C%5C%20%5Cend%7Bmatrix%7D

(5) 正态分布:

math?formula=N(%5Cmu%2C%5Csigma%5E%7B2%7D)%20%EF%BC%9A%20%5Cvarphi(x)%20%3D%5Cfrac%7B1%7D%7B%5Csqrt%7B2%5Cpi%7D%5Csigma%7De%5E%7B-%20%5Cfrac%7B%7B(x%20-%20%5Cmu)%7D%5E%7B2%7D%7D%7B2%5Csigma%5E%7B2%7D%7D%7D%2C%5Csigma%20%3E%200%2C%5Cinfty%20%3C%20x%20%3C%20%2B%20%5Cinfty

(6)指数分布:

math?formula=E(%5Clambda)%3Af(x)%20%3D%5C%7B%20%5Cbegin%7Bmatrix%7D%20%26%20%5Clambda%20e%5E%7B-%7B%CE%BBx%7D%7D%2Cx%20%3E%200%2C%5Clambda%20%3E%200%20%5C%5C%20%26%200%2C%20%5C%5C%20%5Cend%7Bmatrix%7D

(7)几何分布:

math?formula=G(p)%3AP(X%20%3D%20k)%20%3D%20%7B(1%20-%20p)%7D%5E%7Bk%20-%201%7Dp%2C0%20%3C%20p%20%3C%201%2Ck%20%3D%201%2C2%2C%5Ccdots.

(8)超几何分布:

math?formula=H(N%2CM%2Cn)%3AP(X%20%3D%20k)%20%3D%20%5Cfrac%7BC_%7BM%7D%5E%7Bk%7DC_%7BN%20-%20M%7D%5E%7Bn%20-k%7D%7D%7BC_%7BN%7D%5E%7Bn%7D%7D%2Ck%20%3D0%2C1%2C%5Ccdots%2Cmin(n%2CM)

6.随机变量函数的概率分布

(1)离散型:

math?formula=P(X%20%3D%20x_%7B1%7D)%20%3D%20p_%7Bi%7D%2CY%20%3D%20g(X)

则:

math?formula=P(Y%20%3D%20y_%7Bj%7D)%20%3D%20%5Csum_%7Bg(x_%7Bi%7D)%20%3D%20y_%7Bi%7D%7D%5E%7B%7D%7BP(X%20%3D%20x_%7Bi%7D)%7D

(2)连续型:

math?formula=X%5Ctilde%7B%5C%20%7Df_%7BX%7D(x)%2CY%20%3D%20g(x)

则:

math?formula=F_%7By%7D(y)%20%3D%20P(Y%20%5Cleq%20y)%20%3D%20P(g(X)%20%5Cleq%20y)%20%3D%20%5Cint_%7Bg(x)%20%5Cleq%20y%7D%5E%7B%7D%7Bf_%7Bx%7D(x)dx%7D%20%EF%BC%8Cf_%7BY%7D(y)%20%3D%20F'_%7BY%7D(y)

7.重要公式与结论

(1)

math?formula=X%5Csim%20N(0%2C1)%20%5CRightarrow%20%5Cvarphi(0)%20%3D%20%5Cfrac%7B1%7D%7B%5Csqrt%7B2%5Cpi%7D%7D%2C%5CPhi(0)%20%3D%5Cfrac%7B1%7D%7B2%7D%20%EF%BC%8C%20%5CPhi(%20-%20a)%20%3D%20P(X%20%5Cleq%20-%20a)%20%3D%201%20-%20%5CPhi(a)

(2)

math?formula=X%5Csim%20N%5Cleft(%20%5Cmu%2C%5Csigma%5E%7B2%7D%20%5Cright)%20%5CRightarrow%20%5Cfrac%7BX%20-%5Cmu%7D%7B%5Csigma%7D%5Csim%20N%5Cleft(%200%2C1%20%5Cright)%2CP(X%20%5Cleq%20a)%20%3D%20%5CPhi(%5Cfrac%7Ba%20-%5Cmu%7D%7B%5Csigma%7D)

(3)

math?formula=X%5Csim%20E(%5Clambda)%20%5CRightarrow%20P(X%20%3E%20s%20%2B%20t%7CX%20%3E%20s)%20%3D%20P(X%20%3E%20t)

(4)

math?formula=X%5Csim%20G(p)%20%5CRightarrow%20P(X%20%3D%20m%20%2B%20k%7CX%20%3E%20m)%20%3D%20P(X%20%3D%20k)

(5) 离散型随机变量的分布函数为阶梯间断函数;连续型随机变量的分布函数为连续函数,但不一定为处处可导函数。

(6) 存在既非离散也非连续型随机变量。

多维随机变量及其分布

1.二维随机变量及其联合分布

由两个随机变量构成的随机向量 (X,Y) ,联合分布为

math?formula=F(x%2Cy)%20%3D%20P(X%20%5Cleq%20x%2CY%20%5Cleq%20y)

2.二维离散型随机变量的分布

(1) 联合概率分布律

math?formula=P%5C%7B%20X%20%3D%20x_%7Bi%7D%2CY%20%3D%20y_%7Bj%7D%5C%7D%20%3D%20p_%7B%7Bij%7D%7D%3Bi%2Cj%20%3D1%2C2%2C%5Ccdots

(2) 边缘分布律

math?formula=p_%7Bi%20%5Ccdot%7D%20%3D%20%5Csum_%7Bj%20%3D%201%7D%5E%7B%5Cinfty%7Dp_%7B%7Bij%7D%7D%2Ci%20%3D1%2C2%2C%5Ccdots

math?formula=p_%7B%5Ccdot%20j%7D%20%3D%20%5Csum_%7Bi%7D%5E%7B%5Cinfty%7Dp_%7B%7Bij%7D%7D%2Cj%20%3D%201%2C2%2C%5Ccdots

(3) 条件分布律

math?formula=P%5C%7B%20X%20%3D%20x_%7Bi%7D%7CY%20%3D%20y_%7Bj%7D%5C%7D%20%3D%20%5Cfrac%7Bp_%7B%7Bij%7D%7D%7D%7Bp_%7B%5Ccdot%20j%7D%7D%20P%5C%7B%20Y%20%3D%20y_%7Bj%7D%7CX%20%3D%20x_%7Bi%7D%5C%7D%20%3D%20%5Cfrac%7Bp_%7B%7Bij%7D%7D%7D%7Bp_%7Bi%20%5Ccdot%7D%7D

3. 二维连续性随机变量的密度

(1) 联合概率密度

math?formula=f(x%2Cy)

math?formula=f(x%2Cy)%20%5Cgeq%200

math?formula=%5Cint_%7B-%20%5Cinfty%7D%5E%7B%2B%20%5Cinfty%7D%7B%5Cint_%7B-%20%5Cinfty%7D%5E%7B%2B%20%5Cinfty%7D%7Bf(x%2Cy)dxdy%7D%7D%20%3D%201

(2) 分布函数:

math?formula=F(x%2Cy)%20%3D%20%5Cint_%7B-%20%5Cinfty%7D%5E%7Bx%7D%7B%5Cint_%7B-%20%5Cinfty%7D%5E%7By%7D%7Bf(u%2Cv)dudv%7D%7D

(3) 边缘概率密度:

math?formula=f_%7BX%7D%5Cleft(%20x%20%5Cright)%20%3D%20%5Cint_%7B-%20%5Cinfty%7D%5E%7B%2B%20%5Cinfty%7D%7Bf%5Cleft(%20x%2Cy%20%5Cright)%7Bdy%7D%7D%20f_%7BY%7D(y)%20%3D%20%5Cint_%7B-%20%5Cinfty%7D%5E%7B%2B%20%5Cinfty%7D%7Bf(x%2Cy)dx%7D

(4) 条件概率密度:

math?formula=f_%7BX%7CY%7D%5Cleft(%20x%20%5Cmiddle%7C%20y%20%5Cright)%20%3D%20%5Cfrac%7Bf%5Cleft(%20x%2Cy%20%5Cright)%7D%7Bf_%7BY%7D%5Cleft(%20y%20%5Cright)%7D%20f_%7BY%7CX%7D(y%7Cx)%20%3D%20%5Cfrac%7Bf(x%2Cy)%7D%7Bf_%7BX%7D(x)%7D

4.常见二维随机变量的联合分布

(1) 二维均匀分布:

math?formula=(x%2Cy)%20%5Csim%20U(D) ,

math?formula=f(x%2Cy)%20%3D%20%5Cbegin%7Bcases%7D%20%5Cfrac%7B1%7D%7BS(D)%7D%2C(x%2Cy)%20%5Cin%20D%20%5C%5C%200%2C%E5%85%B6%E4%BB%96%5Cend%7Bcases%7D

(2) 二维正态分布:

math?formula=(X%2CY)%5Csim%20N(%5Cmu_%7B1%7D%2C%5Cmu_%7B2%7D%2C%5Csigma_%7B1%7D%5E%7B2%7D%2C%5Csigma_%7B2%7D%5E%7B2%7D%2C%5Crho)%20%2C(X%2CY)%5Csim%20N(%5Cmu_%7B1%7D%2C%5Cmu_%7B2%7D%2C%5Csigma_%7B1%7D%5E%7B2%7D%2C%5Csigma_%7B2%7D%5E%7B2%7D%2C%5Crho)

math?formula=f(x%2Cy)%20%3D%20%5Cfrac%7B1%7D%7B2%5Cpi%5Csigma_%7B1%7D%5Csigma_%7B2%7D%5Csqrt%7B1%20-%20%5Crho%5E%7B2%7D%7D%7D.%5Cexp%5Cleft%5C%7B%20%5Cfrac%7B-%201%7D%7B2(1%20-%20%5Crho%5E%7B2%7D)%7D%5Clbrack%5Cfrac%7B%7B(x%20-%20%5Cmu_%7B1%7D)%7D%5E%7B2%7D%7D%7B%5Csigma_%7B1%7D%5E%7B2%7D%7D%20-%202%5Crho%5Cfrac%7B(x%20-%20%5Cmu_%7B1%7D)(y%20-%20%5Cmu_%7B2%7D)%7D%7B%5Csigma_%7B1%7D%5Csigma_%7B2%7D%7D%20%2B%20%5Cfrac%7B%7B(y%20-%20%5Cmu_%7B2%7D)%7D%5E%7B2%7D%7D%7B%5Csigma_%7B2%7D%5E%7B2%7D%7D%5Crbrack%20%5Cright%5C%7D

5.随机变量的独立性和相关性

X 和 Y 的相互独立:

math?formula=%5CLeftrightarrow%20F%5Cleft(%20x%2Cy%20%5Cright)%20%3D%20F_%7BX%7D%5Cleft(%20x%20%5Cright)F_%7BY%7D%5Cleft(%20y%20%5Cright):

math?formula=%5CLeftrightarrow%20p_%7B%7Bij%7D%7D%20%3D%20p_%7Bi%20%5Ccdot%7D%20%5Ccdot%20p_%7B%5Ccdot%20j%7D(离散型)

math?formula=%5CLeftrightarrow%20f%5Cleft(%20x%2Cy%20%5Cright)%20%3D%20f_%7BX%7D%5Cleft(%20x%20%5Cright)f_%7BY%7D%5Cleft(%20y%20%5Cright) (连续型)

X 和 Y 的相关性:

相关系数

math?formula=%5Crho_%7B%7BXY%7D%7D%20%3D%200 时,称 X 和 Y 不相关,否则称 X 和 Y 相关

6.两个随机变量简单函数的概率分布

离散型:

math?formula=P%5Cleft(%20X%20%3D%20x_%7Bi%7D%2CY%20%3D%20y_%7Bi%7D%20%5Cright)%20%3D%20p_%7B%7Bij%7D%7D%2CZ%20%3D%20g%5Cleft(%20X%2CY%20%5Cright) 则:

math?formula=P(Z%20%3D%20z_%7Bk%7D)%20%3D%20P%5Cleft%5C%7B%20g%5Cleft(%20X%2CY%20%5Cright)%20%3D%20z_%7Bk%7D%20%5Cright%5C%7D%20%3D%20%5Csum_%7Bg%5Cleft(%20x_%7Bi%7D%2Cy_%7Bi%7D%20%5Cright)%20%3D%20z_%7Bk%7D%7D%5E%7B%7D%7BP%5Cleft(%20X%20%3D%20x_%7Bi%7D%2CY%20%3D%20y_%7Bj%7D%20%5Cright)%7D

连续型:

math?formula=%5Cleft(%20X%2CY%20%5Cright)%20%5Csim%20f%5Cleft(%20x%2Cy%20%5Cright)%2CZ%20%3D%20g%5Cleft(%20X%2CY%20%5Cright)

则:

math?formula=F_%7Bz%7D%5Cleft(%20z%20%5Cright)%20%3D%20P%5Cleft%5C%7B%20g%5Cleft(%20X%2CY%20%5Cright)%20%5Cleq%20z%20%5Cright%5C%7D%20%3D%20%5Ciint_%7Bg(x%2Cy)%20%5Cleq%20z%7D%5E%7B%7D%7Bf(x%2Cy)dxdy%7D%20%2C%20f_%7Bz%7D(z)%20%3D%20F'_%7Bz%7D(z)

7.重要公式与结论

(1) 边缘密度公式:

math?formula=f_%7BX%7D(x)%20%3D%20%5Cint_%7B-%20%5Cinfty%7D%5E%7B%2B%20%5Cinfty%7D%7Bf(x%2Cy)dy%2C%7D%20f_%7BY%7D(y)%20%3D%20%5Cint_%7B-%20%5Cinfty%7D%5E%7B%2B%20%5Cinfty%7D%7Bf(x%2Cy)dx%7D

(2)

math?formula=P%5Cleft%5C%7B%20%5Cleft(%20X%2CY%20%5Cright)%20%5Cin%20D%20%5Cright%5C%7D%20%3D%20%5Ciint_%7BD%7D%5E%7B%7D%7Bf%5Cleft(%20x%2Cy%20%5Cright)%7Bdxdy%7D%7D

(3) 若 (X,Y) 服从二维Y=y正态分布

math?formula=N(%5Cmu_%7B1%7D%2C%5Cmu_%7B2%7D%2C%5Csigma_%7B1%7D%5E%7B2%7D%2C%5Csigma_%7B2%7D%5E%7B2%7D%2C%5Crho)

则有:

math?formula=X%5Csim%20N%5Cleft(%20%5Cmu_%7B1%7D%2C%5Csigma_%7B1%7D%5E%7B2%7D%20%5Cright)%2CY%5Csim%20N(%5Cmu_%7B2%7D%2C%5Csigma_%7B2%7D%5E%7B2%7D).

X 与 Y 相互独立

math?formula=%5CLeftrightarrow%20%5Crho%20%3D%200,即 X 与 Y 不相关。

math?formula=C_%7B1%7DX%20%2B%20C_%7B2%7DY%5Csim%20N(C_%7B1%7D%5Cmu_%7B1%7D%20%2B%20C_%7B2%7D%5Cmu_%7B2%7D%2CC_%7B1%7D%5E%7B2%7D%5Csigma_%7B1%7D%5E%7B2%7D%20%2B%20C_%7B2%7D%5E%7B2%7D%5Csigma_%7B2%7D%5E%7B2%7D%20%2B%202C_%7B1%7DC_%7B2%7D%5Csigma_%7B1%7D%5Csigma_%7B2%7D%5Crho)

{\ X} 关于 Y=y 的条件分布为:

math?formula=N(%5Cmu_%7B1%7D%20%2B%20%5Crho%5Cfrac%7B%5Csigma_%7B1%7D%7D%7B%5Csigma_%7B2%7D%7D(y%20-%20%5Cmu_%7B2%7D)%2C%5Csigma_%7B1%7D%5E%7B2%7D(1%20-%20%5Crho%5E%7B2%7D))

Y 关于 X = x 的条件分布为:

math?formula=N(%5Cmu_%7B2%7D%20%2B%20%5Crho%5Cfrac%7B%5Csigma_%7B2%7D%7D%7B%5Csigma_%7B1%7D%7D(x%20-%20%5Cmu_%7B1%7D)%2C%5Csigma_%7B2%7D%5E%7B2%7D(1%20-%20%5Crho%5E%7B2%7D))

(4) 若 X 与 Y 独立,且分别服从

math?formula=N(%5Cmu_%7B1%7D%2C%5Csigma_%7B1%7D%5E%7B2%7D)%2CN(%5Cmu_%7B1%7D%2C%5Csigma_%7B2%7D%5E%7B2%7D),

则:

math?formula=%5Cleft(%20X%2CY%20%5Cright)%5Csim%20N(%5Cmu_%7B1%7D%2C%5Cmu_%7B2%7D%2C%5Csigma_%7B1%7D%5E%7B2%7D%2C%5Csigma_%7B2%7D%5E%7B2%7D%2C0),

math?formula=C_%7B1%7DX%20%2B%20C_%7B2%7DY%5Ctilde%7B%5C%20%7DN(C_%7B1%7D%5Cmu_%7B1%7D%20%2B%20C_%7B2%7D%5Cmu_%7B2%7D%2CC_%7B1%7D%5E%7B2%7D%5Csigma_%7B1%7D%5E%7B2%7D%20C_%7B2%7D%5E%7B2%7D%5Csigma_%7B2%7D%5E%7B2%7D).

(5) 若 X 与 Y 相互独立,

math?formula=f%5Cleft(%20x%20%5Cright)

math?formula=g%5Cleft(%20x%20%5Cright)为连续函数, 则

math?formula=f%5Cleft(%20X%20%5Cright)

math?formula=g(Y) 也相互独立。

随机变量的数字特征

1.数学期望

离散型:

math?formula=P%5Cleft%5C%7B%20X%20%3D%20x_%7Bi%7D%20%5Cright%5C%7D%20%3D%20p_%7Bi%7D%2CE(X)%20%3D%20%5Csum_%7Bi%7D%5E%7B%7D%7Bx_%7Bi%7Dp_%7Bi%7D%7D

连续型:

math?formula=X%5Csim%20f(x)%2CE(X)%20%3D%20%5Cint_%7B-%20%5Cinfty%7D%5E%7B%2B%20%5Cinfty%7D%7Bxf(x)dx%7D

性质:

(1)

math?formula=E(C)%20%3D%20C%2CE%5Clbrack%20E(X)%5Crbrack%20%3D%20E(X)

(2)

math?formula=E(C_%7B1%7DX%20%2B%20C_%7B2%7DY)%20%3D%20C_%7B1%7DE(X)%20%2B%20C_%7B2%7DE(Y)

(3) 若 X 和 Y 独立,则

math?formula=E(XY)%20%3D%20E(X)E(Y)

(4)

math?formula=%5Cleft%5Clbrack%20E(XY)%20%5Cright%5Crbrack%5E%7B2%7D%20%5Cleq%20E(X%5E%7B2%7D)E(Y%5E%7B2%7D)

2.方差:

math?formula=D(X)%20%3D%20E%5Cleft%5Clbrack%20X%20-%20E(X)%20%5Cright%5Crbrack%5E%7B2%7D%20%3D%20E(X%5E%7B2%7D)%20-%20%5Cleft%5Clbrack%20E(X)%20%5Cright%5Crbrack%5E%7B2%7D

3.标准差:

math?formula=%5Csqrt%7BD(X)%7D

4.离散型:

math?formula=D(X)%20%3D%20%5Csum_%7Bi%7D%5E%7B%7D%7B%5Cleft%5Clbrack%20x_%7Bi%7D%20-%20E(X)%20%5Cright%5Crbrack%5E%7B2%7Dp_%7Bi%7D%7D

5.连续型:

math?formula=D(X)%20%3D%20%7B%5Cint_%7B-%20%5Cinfty%7D%5E%7B%2B%20%5Cinfty%7D%5Cleft%5Clbrack%20x%20-%20E(X)%20%5Cright%5Crbrack%7D%5E%7B2%7Df(x)dx

性质:

(1)

math?formula=%5C%20D(C)%20%3D%200%2CD%5Clbrack%20E(X)%5Crbrack%20%3D%200%2CD%5Clbrack%20D(X)%5Crbrack%20%3D%200

(2) X 与 Y 相互独立,则

math?formula=D(X%20%5Cpm%20Y)%20%3D%20D(X)%20%2B%20D(Y)

(3)

math?formula=%5C%20D%5Cleft(%20C_%7B1%7DX%20%2B%20C_%7B2%7D%20%5Cright)%20%3D%20C_%7B1%7D%5E%7B2%7DD%5Cleft(%20X%20%5Cright)

(4) 一般有

math?formula=D(X%20%5Cpm%20Y)%20%3D%20D(X)%20%2B%20D(Y)%20%5Cpm%202Cov(X%2CY)%20%3D%20D(X)%20%2B%20D(Y)%20%5Cpm%202%5Crho%5Csqrt%7BD(X)%7D%5Csqrt%7BD(Y)%7D

(5)

math?formula=%5C%20D%5Cleft(%20X%20%5Cright)%20%3C%20E%5Cleft(%20X%20-%20C%20%5Cright)%5E%7B2%7D%2CC%20%5Cneq%20E%5Cleft(%20X%20%5Cright)

(6)

math?formula=%5C%20D(X)%20%3D%200%20%5CLeftrightarrow%20P%5Cleft%5C%7B%20X%20%3D%20C%20%5Cright%5C%7D%20%3D%201

6.随机变量函数的数学期望

(1) 对于函数

math?formula=Y%20%3D%20g(x)

X 为离散型:

math?formula=P%5C%7B%20X%20%3D%20x_%7Bi%7D%5C%7D%20%3D%20p_%7Bi%7D%2CE(Y)%20%3D%20%5Csum_%7Bi%7D%5E%7B%7D%7Bg(x_%7Bi%7D)p_%7Bi%7D%7D

X 为连续型:

math?formula=X%5Csim%20f(x)%2CE(Y)%20%3D%20%5Cint_%7B-%20%5Cinfty%7D%5E%7B%2B%20%5Cinfty%7D%7Bg(x)f(x)dx%7D

(2)

math?formula=Z%20%3D%20g(X%2CY)%20%3B%20%5Cleft(%20X%2CY%20%5Cright)%5Csim%20P%5C%7B%20X%20%3D%20x_%7Bi%7D%2CY%20%3D%20y_%7Bj%7D%5C%7D%20%3D%20p_%7B%7Bij%7D%7D%20%3B%20E(Z)%20%3D%20%5Csum_%7Bi%7D%5E%7B%7D%7B%5Csum_%7Bj%7D%5E%7B%7D%7Bg(x_%7Bi%7D%2Cy_%7Bj%7D)p_%7B%7Bij%7D%7D%7D%7D%2C%5Cleft(%20X%2CY%20%5Cright)%5Csim%20f(x%2Cy)%20%3B%20E(Z)%20%3D%20%5Cint_%7B-%20%5Cinfty%7D%5E%7B%2B%20%5Cinfty%7D%7B%5Cint_%7B-%20%5Cinfty%7D%5E%7B%2B%20%5Cinfty%7D%7Bg(x%2Cy)f(x%2Cy)dxdy%7D%7D

7.协方差

math?formula=Cov(X%2CY)%20%3D%20E%5Cleft%5Clbrack%20(X%20-%20E(X)(Y%20-%20E(Y))%20%5Cright%5Crbrack

8.相关系数

math?formula=%5Crho_%7B%7BXY%7D%7D%20%3D%20%5Cfrac%7BCov(X%2CY)%7D%7B%5Csqrt%7BD(X)%7D%5Csqrt%7BD(Y)%7D%7D%20%3B%20k%20%E9%98%B6%E4%B8%AD%E5%BF%83%E7%9F%A9%20E%5Cleft%5C%7B%20%7B%5Clbrack%20X%20-%20E(X)%5Crbrack%7D%5E%7Bk%7D%20%5Cright%5C%7D

性质:

(1)

math?formula=%5C%20Cov(X%2CY)%20%3D%20Cov(Y%2CX)

(2)

math?formula=%5C%20Cov(aX%2CbY)%20%3D%20abCov(Y%2CX)

(3)

math?formula=%5C%20Cov(X_%7B1%7D%20%2B%20X_%7B2%7D%2CY)%20%3D%20Cov(X_%7B1%7D%2CY)%20%2B%20Cov(X_%7B2%7D%2CY)

(4)

math?formula=%5C%20%5Cleft%7C%20%5Crho%5Cleft(%20X%2CY%20%5Cright)%20%5Cright%7C%20%5Cleq%201

(5)

math?formula=%5C%20%5Crho%5Cleft(%20X%2CY%20%5Cright)%20%3D%201%20%5CLeftrightarrow%20P%5Cleft(%20Y%20%3D%20aX%20%2B%20b%20%5Cright)%20%3D%201 ,其中

math?formula=a%20%3E%200

math?formula=%5Crho%5Cleft(%20X%2CY%20%5Cright)%20%3D%20-%201%20%5CLeftrightarrow%20P%5Cleft(%20Y%20%3D%20aX%20%2B%20b%20%5Cright)%20%3D%201

,其中

math?formula=a%20%3C%200

9.重要公式与结论

(1)

math?formula=%5C%20D(X)%20%3D%20E(X%5E%7B2%7D)%20-%20E%5E%7B2%7D(X)

(2)

math?formula=%5C%20Cov(X%2CY)%20%3D%20E(XY)%20-%20E(X)E(Y)

(3)

math?formula=%5Cleft%7C%20%5Crho%5Cleft(%20X%2CY%20%5Cright)%20%5Cright%7C%20%5Cleq%201, 且

math?formula=%5Crho%5Cleft(%20X%2CY%20%5Cright)%20%3D%201%20%5CLeftrightarrow%20P%5Cleft(%20Y%20%3D%20aX%20%2B%20b%20%5Cright)%20%3D%201,其中

math?formula=a%20%3E%200

math?formula=%5Crho%5Cleft(%20X%2CY%20%5Cright)%20%3D%20-%201%20%5CLeftrightarrow%20P%5Cleft(%20Y%20%3D%20aX%20%2B%20b%20%5Cright)%20%3D%201 ,其中

math?formula=a%20%3C%200

(4) 下面5个条件互为充要条件:

math?formula=%5Crho(X%2CY)%20%3D%200%20%5CLeftrightarrow%20Cov(X%2CY)%20%3D%200%20%5CLeftrightarrow%20E(X%2CY)%20%3D%20E(X)E(Y)

math?formula=%5CLeftrightarrow%20D(X%20%2B%20Y)%20%3D%20D(X)%20%2B%20D(Y)%5CLeftrightarrow%20D(X%20-%20Y)%20%3D%20D(X)%20%2B%20D(Y)

注: X 与 Y 独立为上述5个条件中任何一个成立的充分条件,但非必要条件。

数理统计的基本概念

1.基本概念

总体:研究对象的全体,它是一个随机变量,用 X 表示。

个体:组成总体的每个基本元素。

简单随机样本:来自总体 X 的 n 个相互独立且与总体同分布的随机变量

math?formula=X_%7B1%7D%2CX_%7B2%7D%5Ccdots%2CX_%7Bn%7D ,称为容量为 n 的简单随机样本,简称样本。

统计量:设

math?formula=X_%7B1%7D%2CX_%7B2%7D%5Ccdots%2CX_%7Bn%7D, 是来自总体 X 的一个样本,

math?formula=g(X_%7B1%7D%2CX_%7B2%7D%5Ccdots%2CX_%7Bn%7D)%20%EF%BC%89是样本的连续函数,且 g() 中不含任何未知参数,则称

math?formula=g(X_%7B1%7D%2CX_%7B2%7D%5Ccdots%2CX_%7Bn%7D)为统计量。

样本均值:

math?formula=%5Coverline%7BX%7D%20%3D%20%5Cfrac%7B1%7D%7Bn%7D%5Csum_%7Bi%20%3D%201%7D%5E%7Bn%7DX_%7Bi%7D

样本方差:

math?formula=S%5E%7B2%7D%20%3D%20%5Cfrac%7B1%7D%7Bn%20-%201%7D%5Csum_%7Bi%20%3D%201%7D%5E%7Bn%7D%7B(X_%7Bi%7D%20-%20%5Coverline%7BX%7D)%7D%5E%7B2%7D

样本矩:样本 k 阶原点矩:

math?formula=A_%7Bk%7D%20%3D%20%5Cfrac%7B1%7D%7Bn%7D%5Csum_%7Bi%20%3D%201%7D%5E%7Bn%7DX_%7Bi%7D%5E%7Bk%7D%2Ck%20%3D%201%2C2%2C%5Ccdots

样本 k 阶中心矩:

math?formula=B_%7Bk%7D%20%3D%20%5Cfrac%7B1%7D%7Bn%7D%5Csum_%7Bi%20%3D%201%7D%5E%7Bn%7D%7B(X_%7Bi%7D%20-%20%5Coverline%7BX%7D)%7D%5E%7Bk%7D%2Ck%20%3D%201%2C2%2C%5Ccdots

2.分布

math?formula=%5Cchi%5E%7B2%7D 分布:

math?formula=%5Cchi%5E%7B2%7D%20%3D%20X_%7B1%7D%5E%7B2%7D%20%2B%20X_%7B2%7D%5E%7B2%7D%20%2B%20%5Ccdots%20%2B%20X_%7Bn%7D%5E%7B2%7D%5Csim%5Cchi%5E%7B2%7D(n) ,其中

math?formula=X_%7B1%7D%2CX_%7B2%7D%5Ccdots%2CX_%7Bn%7D%2C 相互独立,且同服从 N(0,1)

t 分布:

math?formula=T%20%3D%20%5Cfrac%7BX%7D%7B%5Csqrt%7BY%2Fn%7D%7D%5Csim%20t(n) ,其中

math?formula=X%5Csim%20N%5Cleft(%200%2C1%20%5Cright)%2CY%5Csim%5Cchi%5E%7B2%7D(n), 且 X , Y 相互独立。

F 分布:

math?formula=F%20%3D%20%5Cfrac%7BX%2Fn_%7B1%7D%7D%7BY%2Fn_%7B2%7D%7D%5Csim%20F(n_%7B1%7D%2Cn_%7B2%7D) ,其中

math?formula=X%5Csim%5Cchi%5E%7B2%7D%5Cleft(%20n_%7B1%7D%20%5Cright)%2CY%5Csim%5Cchi%5E%7B2%7D(n_%7B2%7D), 且 X , Y 相互独立。

分位数:若

math?formula=P(X%20%5Cleq%20x_%7B%5Calpha%7D)%20%3D%20%5Calpha, 则称

math?formula=x_%7B%5Calpha%7D 为 X 的

math?formula=%5Calpha 分位数

3.正态总体的常用样本分布

(1) 设

math?formula=X_%7B1%7D%2CX_%7B2%7D%5Ccdots%2CX_%7Bn%7D为来自正态总体

math?formula=N(%5Cmu%2C%5Csigma%5E%7B2%7D) 的样本,

math?formula=%5Coverline%7BX%7D%20%3D%20%5Cfrac%7B1%7D%7Bn%7D%5Csum_%7Bi%20%3D%201%7D%5E%7Bn%7DX_%7Bi%7D%2CS%5E%7B2%7D%20%3D%20%5Cfrac%7B1%7D%7Bn%20-%201%7D%5Csum_%7Bi%20%3D%201%7D%5E%7Bn%7D%7B%7B(X_%7Bi%7D%20-%20%5Coverline%7BX%7D)%7D%5E%7B2%7D%2C%7D 则:

math?formula=%5Coverline%7BX%7D%5Csim%20N%5Cleft(%20%5Cmu%2C%5Cfrac%7B%5Csigma%5E%7B2%7D%7D%7Bn%7D%20%5Cright)%7B%5C%20%5C%20%7D%20%E6%88%96%E8%80%85%20%5Cfrac%7B%5Coverline%7BX%7D%20-%20%5Cmu%7D%7B%5Cfrac%7B%5Csigma%7D%7B%5Csqrt%7Bn%7D%7D%7D%5Csim%20N(0%2C1)

math?formula=%5Cfrac%7B(n%20-%201)S%5E%7B2%7D%7D%7B%5Csigma%5E%7B2%7D%7D%20%3D%20%5Cfrac%7B1%7D%7B%5Csigma%5E%7B2%7D%7D%5Csum_%7Bi%20%3D%201%7D%5E%7Bn%7D%7B%7B(X_%7Bi%7D%20-%20%5Coverline%7BX%7D)%7D%5E%7B2%7D%5Csim%5Cchi%5E%7B2%7D(n%20-%201)%7D

3)

math?formula=%5Cfrac%7B1%7D%7B%5Csigma%5E%7B2%7D%7D%5Csum_%7Bi%20%3D%201%7D%5E%7Bn%7D%7B%7B(X_%7Bi%7D%20-%20%5Cmu)%7D%5E%7B2%7D%5Csim%5Cchi%5E%7B2%7D(n)%7D

math?formula=%7B%5C%20%5C%20%7D%5Cfrac%7B%5Coverline%7BX%7D%20-%20%5Cmu%7D%7BS%2F%5Csqrt%7Bn%7D%7D%5Csim%20t(n%20-%201)

4.重要公式与结论

(1) 对于

math?formula=%5Cchi%5E%7B2%7D%5Csim%5Cchi%5E%7B2%7D(n) ,有

math?formula=E(%5Cchi%5E%7B2%7D(n))%20%3D%20n%2CD(%5Cchi%5E%7B2%7D(n))%20%3D%202n;

(2) 对于

math?formula=T%5Csim%20t(n) ,有

math?formula=E(T)%20%3D%200%2CD(T)%20%3D%20%5Cfrac%7Bn%7D%7Bn%20-%202%7D(n%20%3E%202)

(3) 对于

math?formula=F%5Ctilde%7B%5C%20%7DF(m%2Cn),有

math?formula=%5Cfrac%7B1%7D%7BF%7D%5Csim%20F(n%2Cm)%2CF_%7Ba%2F2%7D(m%2Cn)%20%3D%20%5Cfrac%7B1%7D%7BF_%7B1%20-%20a%2F2%7D(n%2Cm)%7D;

(4) 对于任意总体 X ,有

math?formula=E(%5Coverline%7BX%7D)%20%3D%20E(X)%2CE(S%5E%7B2%7D)%20%3D%20D(X)%2CD(%5Coverline%7BX%7D)%20%3D%20%5Cfrac%7BD(X)%7D%7Bn%7D

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值