【01】深度学习——数学基础 | 线性代数 | 微积分 |概率

1.线性代数

1.1标量(scalar)

  一个标量就是一个数,它只有大小,没有方向。标量通常用小写字母表示,一些书上会用斜体表示标量,同时在介绍标量的同时会介绍数值类型,例如: w = 3 , w ∈ R w=3,w \in R w=3,wR表示人的体重; n = 3 , n ∈ N n=3,n \in N n=3,nN表示人的头发。

1.2向量(Vector)

  向量是一组标量排列而成的。向量只有一个轴,沿着行或者列的方向。当一组标量排成一行或者一列的时候,就变成了向量,这些标量的值被称为向量的元素。向量中的元素是按照轴进行有序排列的,这个轴可以是行或者列。
  向量通常用粗体的小写字母表示,向量中的元素可以用带角标的斜体来表示。例如 s \mathbf{s} s依次为班里人考试的成绩 s = [ s 1 s 2 s 2 . . . s n ] \mathbf{s}= \begin{bmatrix} s_1 & s_2 & s_2 &...& s_n \end{bmatrix} s=[s1s2s2...sn] s = [ s 1 s 2 s 2 . . . s n ] \mathbf{s}=\begin{bmatrix} s_1 \\ s_2 \\ s_2 \\...\\ s_n \end{bmatrix} s= s1s2s2...sn

1.2.1模长和范数

  向量的模长:可以简称为向量的模,英文是norm。表示向量在空间中的长度。
  对二维向量 a = ( a 1 , a 2 ) \mathbf{a}=(a_1,a_2) a=(a1,a2)其模长 ∣ ∣ a ∣ ∣ = a 1 2 + a 2 2 ||a||=\sqrt{{a_1}^2+{a_2}^2} ∣∣a∣∣=a12+a22
  对n维向量 a = ( a 1 , a 2 , . . . , a n ) \mathbf{a}=(a_1,a_2,...,a_n) a=(a1,a2,...,an)其模长等于 ∣ ∣ a ∣ ∣ = a 1 2 + a 2 2 + . . . + a n 2 ||a||=\sqrt{{a_1}^2+{a_2}^2+...+{a_n}^2} ∣∣a∣∣=a12+a22+...+an2
  范数 ∣ ∣ x ∣ ∣ p = ( ∑ i ∣ x i ∣ p ) 1 p p ∈ R , p ≥ 1 ||x||_p=(\sum_i|x_i|^p) ^{\frac{1}{p}} p \in R,p \geq 1 ∣∣xp=(ixip)p1pR,p1

1.2.2单位向量

  单位向量:是模长固定为1的向量,它通常用来表示的是向量在空间中的方向,而不是大小。
  对二维向量 a = ( a 1 , a 2 ) \mathbf{a}=(a_1,a_2) a=(a1,a2)其单位向量为 1 a 1 2 + a 2 2 ( a 1 , a 2 ) \frac{1}{\sqrt{{a_1}^2+{a_2}^2}}(a_1,a_2) a12+a22 1(a1,a2)
  对n维向量 a = ( a 1 , a 2 , . . . , a n ) \mathbf{a}=(a_1,a_2,...,a_n) a=(a1,a2,...,an)其单位向量为 1 a 1 2 + a 2 2 + . . . + a n 2 ( a 1 , a 2 , . . . , a n ) \frac{1}{\sqrt{{a_1}^2+{a_2}^2}+...+{a_n}^2}(a_1,a_2,...,a_n) a12+a22 +...+an21(a1,a2,...,an)

1.2.3向量的内积

  内积(Inner Product):也称为点乘、点积,是两个向量对应位置元素相乘再相加,结果是一个标量
单价 a = ( a 1 , a 2 , . . . , a n ) \mathbf{a}=(a_1,a_2,...,a_n) a=(a1,a2,...,an)
数量 b = ( b 1 , b 2 , . . . , b n ) \mathbf{b}=(b_1,b_2,...,b_n) b=(b1,b2,...,bn)
总价 c = a ⋅ b = ∑ i = 1 n a i ⋅ b i \mathbf{c}=\mathbf{a}·\mathbf{b}=\sum_{i=1}^{n}a_i·b_i c=ab=i=1naibi
  内积还可以表示两个向量的线性相关程度,比如将两个向量规范化得到单位向量,二者的内积就是夹角值的余弦,越接近于1则二者更相关,等于0则二者正交(垂直),二者线性无关。
在这里插入图片描述

1.2.4向量的外积

  外积(Outer Product):又叫向量叉积、叉乘等。外积的运算结果是一个向量而不像内积是一个标量。
  两个向量的叉积与这两个向量组成的坐标平面垂直,其值取决于 a , b \mathbf{a},\mathbf{b} a,b的方向和大小,对应计算公式如下:
∣ c ∣ = ∣ a ∣ ∣ b ∣ < s i n ( a , b ) > |c|=|a||b|<sin(a,b)> c=a∣∣b<sin(a,b)>

1.3矩阵(Matrix)

  矩阵是由多个元素组成的表格。矩阵是一种二维数据结构,每个数据再矩阵中都有一个对应的行号和列号。矩阵通常用粗体的大写字母表示
A = [ A 1 , 1 A 1 , 2 ⋯ A 1 , n A 2 , 1 A 2 , 2 ⋯ A 2 , n ⋮ ⋮ ⋱ ⋮ A m , 1 A m , 2 ⋯ A m , n ] ∈ R m × n \mathbf{A} = \begin{bmatrix} A_{1,1} & A_{1,2} &\cdots & A_{1,n}\\ A_{2,1} & A_{2,2}&\cdots &A_{2,n}\\\vdots&\vdots& \ddots &\vdots \\A_{m,1}&A_{m,2}&\cdots&A_{m,n} \end{bmatrix}\in R^{m×n} A= A1,1A2,1Am,1A1,2A2,2Am,2A1,nA2,nAm,n Rm×n

1.3.1矩阵转置

  矩阵的转置是以主对角线为轴,进行镜像翻转。矩阵转置公式如下(其中T就是Transpos):
( A ) m , n T = A n , m A = [ A 1 , 1 A 1 , 2 A 2 , 1 A 2 , 2 A 3 , 1 A 3 , 2 ] A T = [ A 1 , 1 A 1 , 2 A 3 , 1 A 1 , 2 A 2 , 2 A 3 , 2 ] (\mathbf{A})_{m,n}^T=\mathbf{A}_{n,m} \\ \mathbf{A} = \begin{bmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2}\\A_{3,1}&A_{3,2}\end{bmatrix} A^T=\begin{bmatrix} A_{1,1} & A_{1,2} & A_{3,1}\\ A_{1,2}&A_{2,2}&A_{3,2}\end{bmatrix} (A)m,nT=An,mA= A1,1A2,1A3,1A1,2A2,2A3,2 AT=[A1,1A1,2A1,2A2,2A3,1A3,2]

1.3.2矩阵乘法

  有m行k列的矩阵A和k行n列的矩阵B
A = [ A 1 , 1 A 1 , 2 ⋯ A 1 , k A 2 , 1 A 2 , 2 ⋯ A 2 , k ⋮ ⋮ ⋱ ⋮ A m , 1 A m , 2 ⋯ A m , k ] B = [ B 1 , 1 B 1 , 2 ⋯ B 1 , n B 2 , 1 B 2 , 2 ⋯ B 2 , n ⋮ ⋮ ⋱ ⋮ B k , 1 B k , 2 ⋯ B k , n ] \mathbf{A} = \begin{bmatrix} A_{1,1} & A_{1,2} &\cdots & A_{1,k}\\ A_{2,1} & A_{2,2}&\cdots &A_{2,k}\\\vdots&\vdots& \ddots &\vdots \\A_{m,1}&A_{m,2}&\cdots&A_{m,k} \end{bmatrix} \mathbf{B} = \begin{bmatrix} B_{1,1} & B_{1,2} &\cdots & B_{1,n}\\ B_{2,1} & B_{2,2}&\cdots &B_{2,n}\\\vdots&\vdots& \ddots &\vdots \\B_{k,1}&B_{k,2}&\cdots&B_{k,n} \end{bmatrix} A= A1,1A2,1Am,1A1,2A2,2Am,2A1,kA2,kAm,k B= B1,1B2,1Bk,1B1,2B2,2Bk,2B1,nB2,nBk,n
  矩阵 A \mathbf{A} A和矩阵 B \mathbf{B} B相乘,则A的列数必须和B的行数相等,此时:
C = A ⊗ B = A B ⇒ C m , n = ∑ k A m , k B k , n \mathbf{C}=\mathbf{A} \otimes \mathbf{B}=\mathbf{A} \mathbf{B} \Rightarrow C_{m,n}=\sum_kA_{m,k}B{k,n} C=AB=ABCm,n=kAm,kBk,n
  矩阵乘法是有顺序的。
  矩阵内积:结果是一个标量,等于两个矩阵AB对应元素之间相乘再相加。对应公式如下:
c = ∑ i = 1 m ∑ j = 1 n A i , j B i , j c=\sum_{i=1}^{m} \sum_{j=1}^{n}A_{i,j}B_{i,j} c=i=1mj=1nAi,jBi,j
  哈达玛积(Hadamard product):两个矩阵AB对应元素直接相乘,结果是一个矩阵。
C = A ⊙ B ⇒ C = [ A 1 , 1 B 1 , 1 A 1 , 2 B 1 , 2 ⋯ A 1 , n B 1 , n A 2 , 1 B 2 , 1 A 2 , 2 B 2 , 2 ⋯ A 2 , n B 2 , n ⋮ ⋮ ⋱ ⋮ A m , 1 B m , 1 A m , 2 B m , 2 ⋯ A m , n B m , n ] \mathbf{C}=\mathbf{A} \odot \mathbf{B} \Rightarrow \mathbf{C} = \begin{bmatrix} A_{1,1}B_{1,1} & A_{1,2}B_{1,2} &\cdots & A_{1,n}B_{1,n}\\ A_{2,1} B_{2,1} & A_{2,2}B_{2,2} &\cdots &A_{2,n}B_{2,n}\\\vdots&\vdots& \ddots &\vdots \\A_{m,1}B_{m,1}&A_{m,2}B_{m,2}&\cdots&A_{m,n} B_{m,n} \end{bmatrix} C=ABC= A1,1B1,1A2,1B2,1Am,1Bm,1A1,2B1,2A2,2B2,2Am,2Bm,2A1,nB1,nA2,nB2,nAm,nBm,n

1.3.3矩阵乘法的性质

  交换律: A B ≠ B A \mathbf{A}\mathbf{B} \neq \mathbf{B}\mathbf{A} AB=BA
  分配律: A ( B + C ) = A B + A C \mathbf{A}(\mathbf{B}+\mathbf{C}) = \mathbf{A}\mathbf{B}+ \mathbf{A}\mathbf{C} A(B+C)=AB+AC
  结合律: ( A B ) C = A ( B C ) (\mathbf{A}\mathbf{B})\mathbf{C} =\mathbf{A}(\mathbf{B}\mathbf{C}) (AB)C=A(BC)
  转置性质: ( A B ) T = B T A T (\mathbf{A}\mathbf{B})^T=\mathbf{B}^T\mathbf{A}^T (AB)T=BTAT

1.4张量(Tensor)

  张量是多为数组的抽象概括,可以看作是向量和矩阵的推广。
  向量和矩阵的运算方法对张量同样适用。
在这里插入图片描述

2.微积分

  微积分内容包含了微分学、积分学及相关概念和应用。
  微积分研究连续函数,曲线和曲面的性质。
  微积分广泛应用于深度学习领域,如梯度下降法。

2.1极限

  表示某一点出函数值趋近于某一特定值的过程,一般记为:
lim ⁡ x → a f ( x ) = L \lim_{x \to a}f(x)=L xalimf(x)=L
  极限是一种变化状态的描述,核心思想是无限靠近而永远不能到达

2.2导数

  导数是函数的局部性质,指一个函数在某一点附近的变化率,对函数 y = f ( x ) y=f(x) y=f(x)来说,他的导数可以用符号 f ′ ( x ) f'(x) f(x)来表示,也可记为 d f ( x ) d x \frac{df(x)}{dx} dxdf(x)
在这里插入图片描述

2.2.1导数和极限

  对函数 f ( x ) = x 3 − 3 x 2 + 6 2 f(x)=\frac{x^3-3x^2+6}{2} f(x)=2x33x2+6,图像如下所示:
在这里插入图片描述
  计算x=2处的导数可得:
f ′ ( 2 ) = lim ⁡ h → 0 f ( 2 + h ) − f ( 2 ) h h 值: 1.0000000 , 极限值: 2.0000000 h 值: 0.1000000 , 极限值: 0.1550000 h 值: 0.0100000 , 极限值: 0.0150500 h 值: 0.0010000 , 极限值: 0.0015005 h 值: 0.0001000 , 极限值: 0.0001500 h 值: 0.0000100 , 极限值: 0.0000150 h 值: 0.0000010 , 极限值: 0.0000015 h 值: 0.0000001 , 极限值: 0.0000002 f'(2)=\lim_{h \to 0} \frac{f(2+h)-f(2)}{h}\\ h值:1.0000000,极限值:2.0000000\\ h值:0.1000000,极限值:0.1550000\\ h值:0.0100000,极限值:0.0150500\\ h值:0.0010000,极限值:0.0015005\\ h值:0.0001000,极限值:0.0001500\\ h值:0.0000100,极限值:0.0000150\\ h值:0.0000010,极限值:0.0000015\\ h值:0.0000001,极限值:0.0000002\\ f(2)=h0limhf(2+h)f(2)h值:1.0000000,极限值:2.0000000h值:0.1000000,极限值:0.1550000h值:0.0100000,极限值:0.0150500h值:0.0010000,极限值:0.0015005h值:0.0001000,极限值:0.0001500h值:0.0000100,极限值:0.0000150h值:0.0000010,极限值:0.0000015h值:0.0000001,极限值:0.0000002

2.2.2导数和极限

  常见导数计算公式:
  常数函数 f ( x ) = C f ′ ( x ) = 0 f(x)=C \quad f'(x)=0 f(x)=Cf(x)=0
  幂函数 f ( x ) = x n f ′ ( x ) = n x n − 1 f(x)=x^n \quad f'(x)=nx^{n-1} f(x)=xnf(x)=nxn1
  指数函数 f ( x ) = e x f ′ ( x ) = e x f(x)=e^x \quad f'(x)=e^x f(x)=exf(x)=ex
  对数函数 f ( x ) = l n ( x ) f ′ ( x ) = 1 x f(x)=ln(x) \quad f'(x)=\frac{1}{x} f(x)=ln(x)f(x)=x1

2.3微分

  微分是指对函数得局部变化的一种线性描述,自变量的微分记作 d x dx dx,函数 y = f ( x ) y=f(x) y=f(x)的微分记作 d y = d f ( x ) = f ′ ( x ) d x dy=df(x)=f'(x)dx dy=df(x)=f(x)dx
  导数是微分的比值, f ′ ( x ) = d f ( x ) d x f'(x)=\frac{df(x)}{dx} f(x)=dxdf(x)
  导数表示变化率(rate),微分表示变化量(dy或dx)。

2.4偏导数

  偏导数指的是多元函数在莫一点处关于某一变量的导数。
  通常用符号 ∂ f ( x , y ) ∂ x \frac{ \partial f(x,y)}{\partial x} xf(x,y)来表示多元函数 z = f ( x , y ) z=f(x,y) z=f(x,y)关于x的偏导数,即:
∂ f ( x , y ) ∂ x = lim ⁡ h → 0 f ( x + h , y ) − f ( x , y ) h \frac{ \partial f(x,y)}{\partial x}=\lim_{h \to 0} \frac{f(x+h,y)-f(x,y)}{h} xf(x,y)=h0limhf(x+h,y)f(x,y)

2.5梯度

  梯度可以理解为一个包含所有偏导数的向量,符号是 ∇ \nabla
  对函数 z = f ( x , y ) = x 2 + y 2 z=f(x,y)=x^2+y^2 z=f(x,y)=x2+y2来说,它的梯度向量是:
∇ f ( x , y ) = ( 2 x , 2 y ) \nabla f(x,y)=(2x,2y) f(x,y)=(2x,2y)
  梯度下降算法中,参数更新公式为(其中 η \eta η为学习率):
θ t + 1 = θ t − η ∇ θ J ( θ t ) \theta _{t+1}=\theta _{t}-\eta \nabla _{\theta} \mathcal{J}(\theta_{t}) θt+1=θtηθJ(θt)
在这里插入图片描述

2.6链式法则

  链式法则是用来计算复合函数导数的。
  假设对实数x,有可微函数f和g,其中 z = f ( y ) , y = g ( x ) z=f(y),y=g(x) z=f(y),y=g(x)那么,链式法则公式如下:
d z d x = d z d y ⋅ d y d x \frac{dz}{dx}=\frac{dz}{dy}·\frac{dy}{dx} dxdz=dydzdxdy
  所谓的链式法则,就是一层一层增加可以“相互抵消”的分子分母。
  有函数 f ( x ) = x 2 f(x)=x^2 f(x)=x2 g ( x ) = x + 1 g(x)=x+1 g(x)=x+1,计算 h ( x ) = f ( g ( x ) ) = ( x + 1 ) 2 h(x)=f(g(x))=(x+1)^2 h(x)=f(g(x))=(x+1)2的导数,可得:
h ′ ( x ) = f ( g ( x ) ) ⋅ g ′ ( x ) = 2 ( x + 1 ) ⋅ 1 = 2 x + 2 \begin{align*} h'(x)&=f(g(x))·g'(x) \\ &=2(x+1)·1 \\ &=2x+2 \end{align*} h(x)=f(g(x))g(x)=2(x+1)1=2x+2

3.概率

  概率是一种用来描述随机事件发生的可能性的数字度量。
  概率并不客观存在。
  概率是一种不确定性的度量。

3.1概率和深度学习

  概率可以用来表示模型的准确率(错误率)
  概率可以用来描述模型的不确定性
  概率可以作为模型损失的度量

3.2概率的研究

  频率学派——愚公移山的智慧(多次实验)。代表人物Jakob Bernoulli。
  频率学派计算公式如下:
P n ( x ) = n x n P ( x ) = lim ⁡ n → ∞ P n ( x ) \begin{align*} P_n(x)&=\frac{n_x}{n}\\ P(x)&=\lim_{n \to \infty}P_n(x) \end{align*} Pn(x)P(x)=nnx=nlimPn(x)
  古典学派——平均主义的倡导者。
  无法掌握先验知识的情况下,未知事件发生的概率都是相等的。其公式如下(其中m是x包含基本事件的个数,n是基本事件的总数):
P ( x ) = m n \begin{align*} P(x)&=\frac{m}{n} \end{align*} P(x)=nm
  贝叶斯学派——探索未知世界的观察者。
  频率学派认为概率是随机性,贝叶斯派认为概率是不确定性。
  概率是个人的主观概念,表面我们对事务的相信程度,通过观测得到的数据对结果进行更新,从而得到更为准确的估计。

3.3概率和统计

  概率研究的是一次事件的结果。
  统计研究的是总体数据的情况。
  概率是统计的基础,统计则根据观测的数据反向思考其数据生成过程。

3.3.1事件(Event)

  事件相当于实验的结果。
  随机事件其实是一次或多次随机试验的结果。
  事件的基本属性包括:可能性,确定性,兼容性。
  依赖事件指的是事件的发生受其他事件影响。
  独立事件指的是事件的发生与其他事件无关。

3.3.2随机变量和概率分布

  随机变量是概率统计中用来表示随机事件结果的变量。
  随机标量包括离散随机变量和连续随机变量。
  概率分布用来描述随机变量的分布情况。

3.3.3概率密度

  概率密度(probability density)是一种描述概率分布的函数。它表示在某一区间内取一个特定值的概率。
  概率 = 概率密度曲线下的面积(CDF,cumulative probability density function)。
  正态分布概率密度函数如下:
f ( x ) = ( 1 2 π σ 2 e x p ( − x − μ 2 2 σ 2 ) ) \begin{align*} f(x)=(\frac{1}{\sqrt{2 \pi \sigma^2}}exp(-\frac{x-\mu^2}{2 \sigma^2})) \end{align*} f(x)=(2πσ2 1exp(2σ2xμ2))
在这里插入图片描述

3.3.4联合概率和条件概率

  联合概率是指同时发生两个或多个事件的概率,记为 P ( A , B ) P(A,B) P(A,B)
  条件概率是指在某个条件下发生某个事件的概率,记为 P ( A ∣ B ) P(A|B) P(AB)
在这里插入图片描述

  联合概率和条件概率相互转化:
P ( A , B ) = P ( A ∣ B ) P ( B ) P ( A ∣ B ) = P ( A , B ) P ( B ) \begin{align*} P(A,B)&=P(A|B)P(B)\\ P(A|B)&=\frac{P(A,B)}{P(B)} \end{align*} P(A,B)P(AB)=P(AB)P(B)=P(B)P(A,B)

3.4贝叶斯定理

  贝叶斯定理表明在已知条件概率的情况下,可以推导出联合概率。常用于根据已知信息推测未知信息的场景,公式如下:
P ( A ∣ B ) = P ( B ∣ A ) P ( A ) P ( B ) \begin{align*} P(A|B)=\frac{P(B|A)P(A)}{P(B)} \end{align*} P(AB)=P(B)P(BA)P(A)
  其中 P ( A ) P(A) P(A) P ( B ) P(B) P(B)称为先验概率, P ( B ) P(B) P(B)为Evidence, P ( A ) P(A) P(A)为prior, P ( A ∣ B ) P(A|B) P(AB)称为后验概率posterior, P ( B ∣ A ) P(B|A) P(BA)称为可能性likelihood。

3.5极大似然估计

  Maximum Likelihood Estimation,MLE:利用已知的样本结果,反推最优可能导致这样结果的参数,即找到参数的最大概率取值。
在这里插入图片描述
  对于给定的样本集 X = x 1 , x 2 , . . . , x n X={x_1,x_2,...,x_n} X=x1,x2,...,xn我们需要估计参数向量 θ \theta θ,此时可以计算似然函数 L ( θ ) L(\theta) L(θ),等于联合概率密度函数 p ( X ∣ θ ) p(X|\theta) p(Xθ)。公式表示如下:
L ( θ ) = p ( X ∣ θ ) = ∏ i = 1 n p ( x i ∣ θ ) \begin{align*} L(\theta)=p(X|\theta)=\prod_{i=1}^{n}p(x_i|\theta) \end{align*} L(θ)=p(Xθ)=i=1np(xiθ)
在这里插入图片描述

  • 2
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
线性代数微积分是程序员在数学上的两个基础学科,而Python是一种功能强大且易于学习和使用的编程语言。对于程序员来说,学习线性代数微积分对于理解和应用许多计算机科学领域中的问题非常有帮助。使用Python来学习这些数学领域,具有以下几个优势。 首先,Python提供了许多用于线性代数微积分的库,如NumPy和SciPy。这些库使得进行矩阵运算、求解方程组、计算向量的导数等操作变得非常简单。通过使用这些库,可以以简洁而高效的方式实现诸如线性回归、图像处理和机器学习等任务。 其次,Python具有直观的语法和易于理解的代码结构,这使得学习和编写数学算法变得更加容易。与其他编程语言相比,Python的代码可读性更高,这对于初学者来说是一个重要的优势。通过编写Python代码,程序员可以更好地理解线性代数微积分的概念和原理。 最后,Python是一种跨平台的语言,可以在各种操作系统上运行。无论是在Windows、Mac还是Linux系统上,程序员都可以使用Python来学习和实践线性代数微积分。这种灵活性使得学习过程更加方便,并且可以在不同的开发环境中进行代码编写和调试。 总之,使用Python学习和应用线性代数微积分对于程序员来说是一种高效和实用的选择。Python的库和语法使得数学问题的求解更加容易,同时也提高了代码的可读性和可移植性。通过深入学习这些数学领域,程序员可以在算法设计和问题解决方面进行更加丰富和高效的工作。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

花落指尖❀

您的认可是小浪宝宝最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值