下载旧版本torch

本文详细介绍了如何下载特定版本的PyTorch及torchvision,以解决不同CUDA版本的兼容性问题。包括使用豆瓣镜像加速下载,卸载旧版本的方法,以及在不同CUDA环境下,选择正确PyTorch版本的重要性。
摘要由CSDN通过智能技术生成

下载旧版本torch 以及选定对应的torchision

pip3 install torch==0.4.1 torchvision==0.2.1 -i https://pypi.douban.com/simple

指定torch和对应torchvision的版本,并通过豆瓣镜像下载,这样会更快。(偶尔清华的镜像也挺快的,但是今天依旧read time out 了。

删除之前的旧版本

sudo pip3 uninstall torch

这里有个问题:不能确定cuda10能不能与pytorch0.4版本兼容(有结果了,如下图和参考后面多个链接)

!!!!!!
加载模型后接着训练
图一的问题在于旧版本的pytorch不能加载高版本的模型结果。参考链接1

重新开始训练出现的报错
图二的问题在于cuda10与低版本的torch不对应造成某些程序无法执行。参考链接2.0链接2.1

新的坑,填一填:

环境cuda9.0,(对应cudnn7.3)下载torch版本1.0.0,必须下载torchvision0.2.0,否则必会报错,报错内容很奇葩。
如果下载torchvision0.3.0就会自动下载torch的最新版本,而且这个版本在此环境和torch1.0.0版本下也会报错。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值