李宏毅2024生成式人工智能导论 中文镜像版指导与作业

这里是李宏毅老师2024年生成式人工智能导论的大陆镜像版。

我替换了作业中需要🪜才能获取的API,并:

  • 将其中的行为使用 OpenAI 库进行替换
  • 使用 ipywidgets 模拟 Colab 的交互
  • 以中文进行作业引导

现在,你可以在不翻墙的情况下完成课程的所有作业。
所有文件:Github
中文镜像版的制作与分享已经获得李宏毅老师的授权,感谢老师课程的无私分享!

快速访问

生成式人工智能导论 - 课程主页

官方 | 授权视频: YouTube | Bilibili

P.S. 中文镜像将完全实现作业代码的所有功能(本地运行),Kaggle 是国内可直连的在线平台(阅读配置文章),中文 Colab 和 Kaggle 内容一致,英文 Colab 链接对应于原作业,选择其中一个完成学习即可。

### 李宏毅生成式AI导论课程资料概述 #### 课程简介 李宏毅教授的《生成式AI导论》是一门深入浅出介绍生成式人工智能理论和技术的课程。该课程不仅涵盖了生成式AI的基础概念和发展历程,还探讨了当前最前沿的研究成果及其实际应用场景[^1]。 #### 主要内容概览 - **第0讲:课程说明** - 对整个系列讲座的内容框架进行了详细介绍。 - **第1讲:生成式AI是什么?** - 解释了生成式AI的核心定义以及其其他类型的人工智能的区别所在。 - **第二讲:今日的生成式人工智慧厲害在哪裡?從「工具」變為「工具人」** - 探讨现代生成式AI的强大之处,并分析这些进步如何使机器不仅仅作为辅助工具存在,而是能够承担更多自主任务的角色转变过程。 - **第三讲:训练不了人工智能?你可以训练你自己(上)** - 讨论个人技能提升的重要性,特别是在面对复杂多变的技术环境时自我调整和适应的方法论建议。 #### 结构化学习生成式学习的关系 在过去,“结构化学习”指的是让计算机学会处理具有特定格式的数据;而如今所说的“生成式学习”,则是指通过大量无标注数据来构建可以创造新样本或模拟真实世界现象的概率分布模型。尽管两者名称不同,但在某些方面确实存在着一定的联系——它们都涉及到模式识别、特征提取等关键技术环节。然而值得注意的是,在具体实现方式和技术细节层面二者之间差异巨大,尤其是在近十年间随着深度学习算法的发展,后者取得了前所未有的突破性进展[^2]。 #### 获取资源途径 为了方便国内学生获取最新本的教学材料,《李宏毅2024生成式人工智能导论》提供了中文镜像指导文档及配套练习题库,所有相关内容均已托管至GitHub平台供免费下载使用。这一举措得到了原作者正式授权许可,体现了教育工作者对于知识传播开放共享精神的支持态度[^3]。 ```bash git clone https://github.com/user/repo.git cd repo ``` 上述命令可以帮助用户轻松克隆仓库并浏览其中包含的各种教学素材。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Hoper.J

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值