洛谷P2486 [SDOI2011]染色 树剖+线段树+区间染色


洛谷P2486 [SDOI2011]染色


标签

  • 树剖
  • 线段树
  • 区间染色

简明题意

  • 给一棵树,每个节点都拥有自己的颜色,需要你支持两种操作
    1. 修改:将u–v路径上的所有节点的颜色改为c
    2. 查询:查询u–v路径上有多少个颜色段

思路

  • 树剖,剖完线段树维护颜色。修改change创造做很简单,改就完了,查询的操作稍微复杂点,就是比如树上的路径时这样的:1-2-3-4-10-11,查1–11的颜色段,显然1-4的颜色和10-11的颜色查完后,不能直接相加,因为4的颜色可能和10的颜色相同,这样的话,只需要多写一个单点查询颜色的函数,再加一句判断,如果颜色相同,答案-1就可以了。

注意事项

  • 除了上面的情况,还有一种情况需要注意。就是线段树ask的时候,如果信息是从左右子树合并的话,是不能直接返回左右子树中颜色段的数量的和的。因为,可能左子树的右端点颜色和右子树的左端点颜色可能相同,这个时候又需要-1了。这里我判断左子树的右端点颜色和右子树的左端点颜色是否相同的方法是:线段树ask函数直接返回一个Node,得到了Node再去判断

总结


AC代码

#include<cstdio>
#include<vector>
#include<algorithm>
using namespace std;

const int maxn = 1e5 + 10;

int n, m, a[maxn];
vector<int> g[maxn];

int dep[maxn], fa[maxn], siz[maxn], son[maxn];
void dfs1(int u, int f, int deep)
{
   dep[u] = deep;
   fa[u] = f;
   siz[u] = 1;

   int max_son = -1;
   for (auto& v : g[u])
   	if (v != f)
   	{
   		dfs1(v, u, deep + 1);
   		siz[u] += siz[v];
   		if (siz[v] > max_son)
   			max_son = siz[v], son[u] = v;
   	}
}

int id[maxn], cnt, top[maxn], w[maxn];
void dfs2(int u, int topf)
{
   id[u] = ++cnt;
   top[u] = topf;
   w[cnt] = a[u];

   if (son[u])
   {
   	dfs2(son[u], topf);
   	for (auto& v : g[u])
   		if (v != fa[u] && v != son[u])
   			dfs2(v, v);
   }
}

struct Node
{
   int l, r, sum, lc, rc;
   int tag;
   Node(int sum, int lc, int rc) : sum(sum), lc(lc), rc(rc) {}
   Node(){}
};

Node tree[maxn * 4];

void spread(int o)
{
   if (tree[o].tag)
   {
   	tree[o].lc = tree[o].rc = tree[o].tag;
   	tree[o].sum = 1;
   	if (tree[o].l != tree[o].r)
   		tree[o * 2].tag = tree[o * 2 + 1].tag = tree[o].tag;
   	tree[o].tag = 0;
   }
}

void update(int o)
{
   if (tree[o].l != tree[o].r)
   {
   	spread(o * 2), spread(o * 2 + 1);
   	tree[o].sum = tree[o * 2].sum + tree[o * 2 + 1].sum;
   	tree[o].lc = tree[o * 2].lc, tree[o].rc = tree[o * 2 + 1].rc;
   	if (tree[o * 2].rc == tree[o * 2 + 1].lc)
   		tree[o].sum--;
   }
}

void build(int o, int l, int r)
{
   tree[o].l = l, tree[o].r = r;
   if (l == r)
   {
   	tree[o].lc = tree[o].rc = w[l];
   	tree[o].sum = 1;
   	return;
   }

   int mid = (l + r) / 2;
   build(o * 2, l, mid);
   build(o * 2 + 1, mid + 1, r);

   update(o);
}

void change(int o, int l, int r, int c)
{
   spread(o);

   if (tree[o].l == l && tree[o].r == r)
   {
   	tree[o].tag = c;
   	spread(o);
   	return;
   }

   int mid = (tree[o].l + tree[o].r) / 2;
   if (r <= mid)
   	change(o * 2, l, r, c);
   else if (l > mid)
   	change(o * 2 + 1, l, r, c);
   else
   	change(o * 2, l, mid, c), change(o * 2 + 1, mid + 1, r, c);

   update(o);
}

Node ask(int o, int l, int r)
{
   spread(o);

   if (tree[o].l == l && tree[o].r == r)
   	return tree[o];

   int mid = (tree[o].l + tree[o].r) / 2;
   if (r <= mid)
   	return ask(o * 2, l, r);
   else if (l > mid)
   	return ask(o * 2 + 1, l, r);
   else
   {
   	Node ll = ask(o * 2, l, mid);
   	Node rr = ask(o * 2 + 1, mid + 1, r);
   	if (ll.rc == rr.lc)
   		return Node(ll.sum + rr.sum - 1, ll.lc, rr.rc);
   	else
   		return Node(ll.sum + rr.sum, ll.lc, rr.rc);
   }
}

int ask_co(int o, int x)
{
   spread(o);
   if (tree[o].l == tree[o].r)
   	return tree[o].lc;

   int mid = (tree[o].l + tree[o].r) / 2;
   if (x <= mid)
   	return ask_co(o * 2, x);
   else
   	return ask_co(o * 2 + 1, x);
}

void solve()
{
   scanf("%d%d", &n, &m);
   for (int i = 1; i <= n; i++)
   	scanf("%d", &a[i]);
   for (int i = 1; i < n; i++)
   {
   	int u, v;
   	scanf("%d%d", &u, &v);

   	g[u].push_back(v), g[v].push_back(u);
   }

   dfs1(1, 1, 1);
   dfs2(1, 1);
   build(1, 1, n);

   while (m--)
   {
   	char cmd[10];
   	scanf("%s", cmd);

   	if (cmd[0] == 'Q')
   	{
   		int u, v;
   		scanf("%d%d", &u, &v);

   		int cnt = 0;
   		while (top[u] != top[v])
   		{
   			if (dep[top[v]] < dep[top[u]]) swap(u, v);

   			cnt += ask(1, id[top[v]], id[v]).sum;
   			if (ask_co(1, id[top[v]]) == ask_co(1, id[fa[top[v]]])) cnt--;

   			v = fa[top[v]];
   		}
   		printf("%d\n", cnt + ask(1, min(id[u], id[v]), max(id[u], id[v])).sum);
   	}
   	else
   	{
   		int u, v, c;
   		scanf("%d%d%d", &u, &v, &c);

   		while (top[u] != top[v])
   		{
   			if (dep[top[v]] < dep[top[u]]) swap(u, v);

   			change(1, id[top[v]], id[v], c);

   			v = fa[top[v]];
   		}
   		change(1, min(id[u], id[v]), max(id[u], id[v]), c);
   	}
   }
}

int main()
{
   freopen("Testin.txt", "r", stdin);
   solve();
   return 0;
}

双倍经验

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值