莫比乌斯反演
dan__zh
qq:1244536605
看我的博客有任何地方没看懂的可以加我qq,我会仔细解答~~~
展开
-
(已搬家)洛谷P3312 [SDOI2014]数表 莫比乌斯反演+线段树+约数和筛
洛谷P3312 [SDOI2014]数表 标签 前言 简明题意 有一个n∗mn *mn∗m的数表,每个点(i,j)(i,j)(i,j)的值是能同时整除i,ji,ji,j的自然数之和。再给定aaa,需要你求表中所有值>a>a>a的项之和。 思路 首先用数学公式表示出来: ∑i=1n∑j=1m(∑d∣i且d∣jd)∗[∑d∣i且d∣jd<...原创 2019-08-02 16:44:54 · 125 阅读 · 1 评论 -
洛谷P3768 简单的数学题 杜教筛+莫比乌斯反演
洛谷P3768 简单的数学题 标签 莫比乌斯反演 狄利克雷卷积 杜教筛 前言 很简单很好推~ 简明题意 求 ∑i=1n∑j=1nijgcd(i,j)(模p意义下)\sum_{i=1}^n\sum_{j=1}^nijgcd(i,j)(模p意义下)i=1∑nj=1∑nijgcd(i,j)(模p意义下) 思路 很简单鸭。顺着推一遍就出来了~ ∑i=1n∑j=1nijgcd(i,j)\s...原创 2019-08-05 21:45:16 · 204 阅读 · 0 评论 -
(已搬家)洛谷P4450 双亲数 莫比乌斯反演+整除分块
洛谷P4450 双亲数 标签 莫比乌斯函数性质 整除分块 前言 这好像是一道重题鸭,就是背景换了一下,跟洛谷P3455 [POI2007]ZAP-Queries是一样的,所以详见我的另一篇博客把戳这里 简明题意 无 思路 无 注意事项 无 总结 无 AC代码 #include<cstdio> #include<algorithm> u...原创 2019-07-31 19:57:09 · 179 阅读 · 0 评论 -
洛谷P2257 YY的GCD 莫比乌斯函数反演+线性筛
洛谷P2257 YY的GCD 标签 莫反 前言 我的第一道懵逼反演… 简明题意 给定n,m,求使得gcd(i,j)的值是素数,有多少对这样的ij 思路 把题目写成公式形式,就是让你求: ∑i=1n∑j=1m[gcd(i,j)==p](p是所有质数)\sum_{i=1}^n \sum_{j=1}^m[gcd(i,j)==p](p是所有质数)i=1∑nj=1∑m[gcd(i...原创 2019-07-28 22:14:40 · 328 阅读 · 0 评论 -
(已搬家)洛谷P3455 [POI2007]ZAP-Queries 莫比乌斯反演+整除分块
洛谷P3455 [POI2007]ZAP-Queries 标签 莫反 前言 比较简单的莫反 简明题意 给定n,m,dn,m,dn,m,d,对于i<=n,j<=mi<=n,j<=mi<=n,j<=m,问其中有多少对二元组(i,j)(i,j)(i,j)使得gcd(i,j)==dgcd(i,j)==dgcd(i,j)=...原创 2019-07-30 11:48:45 · 184 阅读 · 1 评论 -
P2522 [HAOI2011]Problem b 莫比乌斯反演+容斥+整除分块
P2522 [HAOI2011]Problem b 标签 莫反 容斥 前言 喵喵喵 确保你会做这一题 简明题意 给定a,b,c,d,ka,b,c,d,ka,b,c,d,k,其中i∈[a,b],j∈[c,d]i \in [a,b],j \in[c,d]i∈[a,b],j∈[c,d],现在需要你求出使得gcd(i,j)==kgcd(i,j)==kgcd(i,j)==k的二元组(i,j...原创 2019-07-30 13:04:30 · 129 阅读 · 0 评论 -
(未完)洛谷P4318 完全平方数 莫比乌斯反演+二分
洛谷P4318 完全平方数 标签 莫比乌斯函数性质 二分答案 前言 简明题意 给定kkk,需要你求出从1开始第kkk个不含平方因子的数。 思路 首先,很容易想到莫比乌斯函数,当iii有平方因子,μ(i)=0\mu(i)=0μ(i)=0;iii没有平方因子,则μ(i)=±1\mu(i)=\pm1μ(i)=±1。我们先把莫比乌斯函数筛出来,然后预处理一下:第iii个不含平方因子的数...原创 2019-07-31 12:44:19 · 154 阅读 · 0 评论 -
洛谷P3327 [SDOI2015]约数个数和 莫比乌斯反演+整除分块+线性筛
洛谷P3327 [SDOI2015]约数个数和 标签 莫比乌斯函数性质 整除分块 线性筛 前言 这里的整除分块是另一种常见的形式。我半天都没搞清楚是怎么分的…好久之后才恍然大悟 简明题意 d(x)d(x)d(x)表示xxx的约数个数。给定n,mn,mn,m,求 ∑i=1n∑j=1md(i∗j)\sum_{i=1}^n\sum_{j=1}^md(i*j)i=1∑nj=1∑md(...原创 2019-08-01 12:07:19 · 173 阅读 · 2 评论 -
洛谷P1447 [NOI2010]能量采 莫比乌斯反演+整除分块
洛谷P1447 [NOI2010]能量采集 标签 莫比乌斯函数性质 整除分块 前言 简明题意 给一个n∗mn*mn∗m的矩阵,如果从(0,0)到(x,y)(0,0)到(x,y)(0,0)到(x,y)的连线上点的数量是cntcntcnt(不包含(0,0),(x,y)(0,0),(x,y)(0,0),(x,y)),那么点(x,y)(x,y)(x,y)的花费就是2∗cnt+12*cnt +...原创 2019-07-31 19:45:58 · 138 阅读 · 0 评论 -
UVA11426 GCD - Extreme (II) 莫比乌斯反演
UVA11426 GCD - Extreme (II) 标签 莫比乌斯反演 前言 我的csdn和博客园是同步的,欢迎来访danzh-博客园~ 简明题意 求 ∑i=1n−1∑j=i+1ngcd(i,j)\sum_{i=1}^{n-1}\sum_{j=i+1}^ngcd(i,j)i=1∑n−1j=i+1∑ngcd(i,j) n <=4e6 思路 首先求∑i=1n∑j=...原创 2019-08-29 16:39:45 · 188 阅读 · 0 评论