洛谷P2568 GCD 欧拉函数+线筛


洛谷P2568 GCD


标签

  • 欧拉函数

前言


简明题意

  • 给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的数对(x,y)有多少对.

思路

  • 根据套路,可以把上面的式子换成:(原理)
    ∑ p : [ 1 , n ] 内 所 有 素 数 ∑ i = 1 n ∑ j = 1 n [ g c d ( i , j ) = = p ] \sum_{p:[1,n]内所有素数}\sum_{i=1}^n \sum_{j=1}^n [gcd(i,j)==p] p:[1,n]i=1nj=1n[gcd(i,j)==p]
    = ∑ p : [ 1 , n ] 内 所 有 素 数 ∑ i = 1 n p ∑ j = 1 n p [ g c d ( i , j ) = = 1 ] =\sum_{p:[1,n]内所有素数}\sum_{i=1}^{\frac np} \sum_{j=1}^{\frac np} [gcd(i,j)==1] =p:[1,n]i=1pnj=1pn[gcd(i,j)==1]
    自己举一些数据,会发现
    = ∑ i = 1 n p ∑ j = 1 n p [ g c d ( i , j ) = = 1 ] = 2 p r e ϕ ( n p ) − 1 =\sum_{i=1}^{\frac np} \sum_{j=1}^{\frac np} [gcd(i,j)==1]=2pre\phi(\frac np)-1 =i=1pnj=1pn[gcd(i,j)==1]=2preϕ(pn)1
    所以原式就成了
    ∑ p : [ 1 , n ] 内 所 有 素 数 ( 2 p r e ϕ ( n p ) − 1 ) \sum_{p:[1,n]内所有素数}(2pre\phi(\frac np)-1) p:[1,n](2preϕ(pn)1)

注意事项

  • 自己举例子可以发现 ∑ i = 1 n p ∑ j = 1 n p [ g c d ( i , j ) = = 1 ] = 2 p r e ϕ ( n p ) − 1 \sum_{i=1}^{\frac np} \sum_{j=1}^{\frac np} [gcd(i,j)==1]=2pre\phi(\frac np)-1 i=1pnj=1pn[gcd(i,j)==1]=2preϕ(pn)1

总结

  • 熟记以下套路
    ∑ i = 1 n ∑ j = 1 n [ g c d ( i , j ) = = p ] = ∑ i = 1 n p ∑ j = 1 n p [ g c d ( i , j ) = = 1 ] = 2 p r e ϕ ( n p ) − 1 \sum_{i=1}^n \sum_{j=1}^n [gcd(i,j)==p]=\sum_{i=1}^{\frac np} \sum_{j=1}^{\frac np} [gcd(i,j)==1]=2pre\phi(\frac np)-1 i=1nj=1n[gcd(i,j)==p]=i=1pnj=1pn[gcd(i,j)==1]=2preϕ(pn)1
    ∑ i = 1 n p [ g c d ( i , n p ) = = 1 ] = p r e ϕ ( n p ) ( n p 向 下 取 整 ) \sum_{i=1}^{\frac np}[gcd(i,\frac np)==1]=pre\phi(\frac np)(\frac np向下取整) i=1pn[gcd(i,pn)==1]=preϕ(pn)(pn)

AC代码

#include<cstdio>

const int maxn = 1e7 + 10;

int n;

bool no_prime[maxn];
int prime[maxn], phi[maxn];
int shai(int n)
{
	phi[1] = 1;
	int cnt = 0;
	for (int i = 2; i <= n; i++)
	{
		if (!no_prime[i])
			prime[++cnt] = i, phi[i] = i - 1;
		for (int j = 1; j <= cnt && prime[j] * i <= n; j++)
		{
			no_prime[prime[j] * i] = 1;
			phi[prime[j] * i] = (i % prime[j] == 0) ? phi[i] * prime[j] : phi[i] * (prime[j] - 1);

			if (i % prime[j] == 0) break;
		}
	}
	return cnt;
}

long long pre[maxn];
void solve()
{
	scanf("%d", &n);
	int cnt = shai(n);
	for (int i = 1; i <= n; i++)
		pre[i] = pre[i - 1] + phi[i];

	long long ans = -cnt;
	for (int i = 1; i <= cnt; i++)
		ans += 2 * pre[n / prime[i]];
			
	printf("%lld", ans);
}

int main()
{
	solve();
	return 0;
}
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值