saprk 性能调优,并行度调节

性能调优首先是增加资源,增加Application对应的executor的数量,增加executor里面的cpu core,然后
增加executor里面的内存大小!

这节课也是非常重要的,因为分配完你所能分配的最大资源了!然后对应你的资源调节你程序的并行度!

Spark并行度指的是什么?
Spark作业,Application,Jobs,action(collect)触发一个job,1个job;每个job拆成多个stage,
发生shuffle的时候,会拆分出一个stage,reduceByKey;

stage0
val lines = sc.textFile(“hdfs://”)
val words = lines.flatMap(.split(" "))
val pairs = words.map((
,1))
val wordCount = pairs.reduceByKey(_ + _)
wordCount.collect()

reduceByKey,stage0的task,在最后,执行到reduceByKey的时候,会为每个stage1的task,
都创建一份文件(也可能是合并在少量的文件里面);每个stage1的task,会去各个节点上的各个
task创建的属于自己的那一份文件里面,拉取数据;每个stage1的task,拉取到的数据,
一定是相同key对应的数据。对相同的key,对应的values,才能去执行我们自定义的function操作(_ + _)

这里面的shuffle也是和mapreduce的原理一样,有几个reduce就会有几个file在map端准备好!

并行度:其实就是指的是,Spark作业中,各个stage的task数量,也就代表了Spark作业的在各个阶段
(stage)的并行度。
如果不调节并行度,导致并行度过低,会怎么样?

假设,现在已经在spark-submit脚本里面,给我们的spark作业分配了足够多的资源,比如50个executor,
每个executor有10G内存,每个executor有3个cpu core。基本已经达到了集群或者yarn队列的资源上限。

task没有设置,或者设置的很少,比如就设置了,100个task。50个executor,每个executor有3个
cpu core,也就是说,你的Application任何一个stage运行的时候,都有总数在150个cpu core,
可以并行运行。但是你现在,只有100个task,平均分配一下,每个executor分配到2个task,ok,
那么同时在运行的task,只有100个,每个executor只会并行运行2个task。每个executor剩下的一个
cpu core,就浪费掉了。

你的资源虽然分配足够了,但是问题是,并行度没有与资源相匹配,导致你分配下去的资源都浪费掉了。
合理的并行度的设置,应该是要设置的足够大,大到可以完全合理的利用你的集群资源;比如上面的例子,
总共集群有150个cpu core,可以并行运行150个task。那么就应该将你的Application的并行度,
至少设置成150,才能完全有效的利用你的集群资源,让150个task,并行执行;而且task增加到150个以后,
即可以同时并行运行,还可以让每个task要处理的数据量变少;比如总共150G的数据要处理,
如果是100个task,每个task计算1.5G的数据;现在增加到150个task,可以并行运行,
而且每个task主要处理1G的数据就可以。

很简单的道理,只要合理设置并行度,就可以完全充分利用你的集群计算资源,
并且减少每个task要处理的数据量,最终,就是提升你的整个Spark作业的性能和运行速度。

1、task数量,至少设置成与Spark application的总cpu core数量相同(最理想情况,比如总共150个
cpu core,分配了150个task,一起运行,差不多同一时间运行完毕)

2、官方是推荐,task数量,设置成spark application总cpu core数量的2~3倍,比如150个cpu core,
基本要设置task数量为300~500;
实际情况,与理想情况不同的,有些task会运行的快一点,比如50s就完了,有些task,可能会慢一点,
要1分半才运行完,所以如果你的task数量,刚好设置的跟cpu core数量相同,可能还是会导致资源的浪费,
因为,比如150个task,10个先运行完了,剩余140个还在运行,但是这个时候,有10个cpu core就空闲出来了,
就导致了浪费。那如果task数量设置成cpu core总数的2~3倍,那么一个task运行完了以后,
另一个task马上可以补上来,就尽量让cpu core不要空闲,同时也是尽量提升spark作业运行的效率和速度,
提升性能。

3、如何设置一个Spark Application的并行度?
spark.default.parallelism
SparkConf conf = new SparkConf()
.set(“spark.default.parallelism”, “500”)

“重剑无锋”:真正有分量的一些技术点,其实都是看起来比较平凡,看起来没有那么“炫酷”,
但是其实是你每次写完一个spark作业,进入性能调优阶段的时候,应该优先调节的事情,就是这些
(大部分时候,可能资源和并行度到位了,spark作业就很快了,几分钟就跑完了)

“炫酷”:数据倾斜(100个spark作业,最多10个会出现真正严重的数据倾斜问题),感冒和发烧,
你不能上来就用一些偏方(癌症,用癞蛤蟆熬煮汤药);JVM调优;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值