【InternLM】茴香豆:搭建你的 RAG 智能助理

什么是RAG

在介绍RAG 之前 还是附上文档和视频教程地址:
教学文档链接
教学视频链接

概述

通俗定义:在利用大语言模型回答问题之前,先将用户输入的内容作为索引,从外部知识库检索相关信息,再结合大语言模型生成回答。

本质:让模型获取正确的context,利用In Context Learning的能力,输出正确的响应。

在这里插入图片描述

技术概述

在这里插入图片描述

三个重要部分:索引、检索、生成

在这里插入图片描述

向量数据库

以下内容可以参考这篇综述文献:

原文:[2312.10997] Retrieval-Augmented Generation for Large Language Models: A Survey (arxiv.org)

译文:面向大语言模型的检索增强生成技术:综述 [译]

不同的模型优化方法

  • prompt engineering
  • RAG
  • 微调

三种方法集合到一起,就既能满足外部知识的高需求,又能满足对于任务适配度高的需求
在这里插入图片描述

模型优化方法比较

RAG工作流程

w/o RAG 的对比
在这里插入图片描述

RAG 工作流程

三种RAG范式

在这里插入图片描述

RAG优化方法

针对向量数据库:嵌入优化、索引优化

针对高级RAG的前检索和后检索:查询优化、上下文管理

针对检索:迭代检索、递归检索、自适应检索

针对大模型:LLM微调

在这里插入图片描述

RAG 优化方法

RAG vs. 微调

在这里插入图片描述

RAG评测

在这里插入图片描述

茴香豆

HuixiangDou,一个由大型语言模型 提供支持的技术助手,茴香豆不仅仅是一个RAG,而是一个专门针对群聊优化的知识助手。
在这里插入图片描述

茴香豆

核心特性

开源、准确、专业、成本低、安全、可扩展
在这里插入图片描述

核心特性

茴香豆工作流

一个茴香豆个人小助手的四个组成部分

  • 专业技术文档
  • 前端平台
  • 后端大模型
  • 豆哥
    在这里插入图片描述
    茴香豆构建

在这里插入图片描述

在这里插入图片描述

茴香豆工作流

实践部分

在 InternLM Studio 开发机上部署茴香豆技术助手

配置环境

studio-conda -o internlm-base -t InternLM2_Huixiangdou
conda activate InternLM2_Huixiangdou

复制模型、下载安装茴香豆

# 复制BCE模型
ln -s /root/share/new_models/maidalun1020/bce-embedding-base_v1 /root/models/bce-embedding-base_v1
ln -s /root/share/new_models/maidalun1020/bce-reranker-base_v1 /root/models/bce-reranker-base_v1

# 复制大模型参数(下面的模型,根据作业进度和任务进行**选择一个**就行)
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-7b /root/models/internlm2-chat-7b

cd /root
# 下载 repo
git clone https://github.com/internlm/huixiangdou && cd huixiangdou
git checkout 447c6f7e68a1657fce1c4f7c740ea1700bde0440

使用茴香豆搭建 RAG 助手

修改配置文件(向量数据库、词嵌入的模型、重排序模型、基座大模型)

sed -i '6s#.*#embedding_model_path = "/root/models/bce-embedding-base_v1"#' /root/huixiangdou/config.ini
sed -i '7s#.*#reranker_model_path = "/root/models/bce-reranker-base_v1"#' /root/huixiangdou/config.ini
sed -i '29s#.*#local_llm_path = "/root/models/internlm2-chat-7b"#' /root/huixiangdou/config.ini

创建知识库

下载Huixiangdou语料

cd /root/huixiangdou && mkdir repodir
git clone https://github.com/internlm/huixiangdou --depth=1 repodir/huixiangdou

增加茴香豆相关的问题到接受问题 huixiangdou/resource/good_questions.json 示例中

cd /root/huixiangdou
mv resource/good_questions.json resource/good_questions_bk.json

echo '[
    "mmpose中怎么调用mmyolo接口",
    "mmpose实现姿态估计后怎么实现行为识别",
    "mmpose执行提取关键点命令不是分为两步吗,一步是目标检测,另一步是关键点提取,我现在目标检测这部分的代码是demo/topdown_demo_with_mmdet.py demo/mmdetection_cfg/faster_rcnn_r50_fpn_coco.py checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth   现在我想把这个mmdet的checkpoints换位yolo的,那么应该怎么操作",
    "在mmdetection中,如何同时加载两个数据集,两个dataloader",
    "如何将mmdetection2.28.2的retinanet配置文件改为单尺度的呢?",
    "1.MMPose_Tutorial.ipynb、inferencer_demo.py、image_demo.py、bottomup_demo.py、body3d_pose_lifter_demo.py这几个文件和topdown_demo_with_mmdet.py的区别是什么,\n2.我如果要使用mmdet是不是就只能使用topdown_demo_with_mmdet.py文件,",
    "mmpose 测试 map 一直是 0 怎么办?",
    "如何使用mmpose检测人体关键点?",
    "我使用的数据集是labelme标注的,我想知道mmpose的数据集都是什么样式的,全都是单目标的数据集标注,还是里边也有多目标然后进行标注",
    "如何生成openmmpose的c++推理脚本",
    "mmpose",
    "mmpose的目标检测阶段调用的模型,一定要是demo文件夹下的文件吗,有没有其他路径下的文件",
    "mmpose可以实现行为识别吗,如果要实现的话应该怎么做",
    "我在mmyolo的v0.6.0 (15/8/2023)更新日志里看到了他新增了支持基于 MMPose 的 YOLOX-Pose,我现在是不是只需要在mmpose/project/yolox-Pose内做出一些设置就可以,换掉demo/mmdetection_cfg/faster_rcnn_r50_fpn_coco.py 改用mmyolo来进行目标检测了",
    "mac m1从源码安装的mmpose是x86_64的",
    "想请教一下mmpose有没有提供可以读取外接摄像头,做3d姿态并达到实时的项目呀?",
    "huixiangdou 是什么?",
    "使用科研仪器需要注意什么?",
    "huixiangdou 是什么?",
    "茴香豆 是什么?",
    "茴香豆 能部署到微信吗?",
    "茴香豆 怎么应用到飞书",
    "茴香豆 能部署到微信群吗?",
    "茴香豆 怎么应用到飞书群",
    "huixiangdou 能部署到微信吗?",
    "huixiangdou 怎么应用到飞书",
    "huixiangdou 能部署到微信群吗?",
    "huixiangdou 怎么应用到飞书群",
    "huixiangdou",
    "茴香豆",
    "茴香豆 有哪些应用场景",
    "huixiangdou 有什么用",
    "huixiangdou 的优势有哪些?",
    "茴香豆 已经应用的场景",
    "huixiangdou 已经应用的场景",
    "huixiangdou 怎么安装",
    "茴香豆 怎么安装",
    "茴香豆 最新版本是什么",
    "茴香豆 支持哪些大模型",
    "茴香豆 支持哪些通讯软件",
    "config.ini 文件怎么配置",
    "remote_llm_model 可以填哪些模型?"
]' > /root/huixiangdou/resource/good_questions.json

再创建一个测试用的问询列表,用来测试拒答流程是否起效:

cd /root/huixiangdou

echo '[
"huixiangdou 是什么?",
"你好,介绍下自己"
]' > ./test_queries.json

创建 RAG 检索过程中使用的向量数据库:

# 创建向量数据库存储目录
cd /root/huixiangdou && mkdir workdir 

# 分别向量化知识语料、接受问题和拒绝问题中后保存到 workdir
python3 -m huixiangdou.service.feature_store --sample ./test_queries.json

运行茴香豆知识助手

测试效果

# 填入问题
sed -i '74s/.*/    queries = ["huixiangdou 是什么?", "茴香豆怎么部署到微信群", "今天天气怎么样?"]/' /root/huixiangdou/huixiangdou/main.py

# 运行茴香豆
cd /root/huixiangdou/
python3 -m huixiangdou.main --standalone

good question:“茴香豆怎么部署到微信群”效果

  • 首先判断是否是疑问句:是(8/10分)
  • 确定句子主题:“茴香豆的微信部署”
  • 找到相关材料:“README_zh.md”(8/10分)

在这里插入图片描述
茴香豆的最终回答

在这里插入图片描述
bad question:“今天天气怎么样”效果

  • 首先判断是否是疑问句:是
  • 确定句子主题:天气
  • 由于该句子和知识库无关,所以不输出任何回答。

在这里插入图片描述
奇怪的是,当把问题“茴香豆怎么部署到微信群”改为“茴香豆怎么部署到微信群?”(仅仅多了一个问号)

茴香豆就拒绝回答了,明明确定的主题也是一样的

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值