
InternLM
文章平均质量分 81
一个不懂技术的人
不积跬步无以至千里
展开
-
【InternLM】茴香豆:搭建你的 RAG 智能助理(二)
本来想问的是茴香豆的基座模型,但是被理解成了知识库中scfoundation的基座模型。教程链接:。但是同样的问题,茴香豆web版的回答很详细,但是部署到飞书之后,就主打一个精炼(惜字如金)了~前三轮,先问了和文献密切相关的问题,茴香豆都准确地调用了知识库作为回答,并且回答的都是正确的。确定主语,再问一遍,检查成了非问题,还是不错的,没有胡编乱造。茴香豆就拒绝回答了,明明确定的主题也是一样的。原创 2024-05-10 15:47:19 · 943 阅读 · 0 评论 -
【InternLM】书生·浦语大模型报名地址
扫码报名原创 2024-05-10 15:11:46 · 199 阅读 · 0 评论 -
【InternLM】书生·浦语大模型全链路开源开放体系
超高的数据质量及预处理过程,使得pretrain阶段和alignment阶段都受益。高质量长文本预料,提升了长文本处理能力。高效的训练框架,优化训练过程。新颖的RLHF策略,提高与人类指令的一致性。原创 2024-05-07 17:31:41 · 868 阅读 · 0 评论 -
【InternLM】轻松玩转书生·浦语大模型趣味Demo
八戒-Chat是第一期实战营中的优秀项目Roleplay-with-XiYou (github)中的一个子项目,是利用《西游记》剧本中所有关于猪八戒的台词和语句以及 LLM API 生成的相关数据结果,进行全量微调得到的猪八戒聊天模型。包括了 八戒-Chat-7B 和 八戒-Chat-1.8B 两个版本。Lagent 是一个轻量级、开源的基于大语言模型的智能体(agent)框架,支持用户快速地将一个大语言模型转变为多种类型的智能体,并提供了一些典型工具为大语言模型赋能。原创 2024-05-09 10:52:39 · 919 阅读 · 0 评论 -
【InternLM】茴香豆:搭建你的 RAG 智能助理
教学文档链接教学视频链接通俗定义:在利用大语言模型回答问题之前,先将用户输入的内容作为索引,从外部知识库检索相关信息,再结合大语言模型生成回答。本质:让模型获取正确的context,利用In Context Learning的能力,输出正确的响应。技术概述三个重要部分:索引、检索、生成向量数据库以下内容可以参考这篇综述文献:面向大语言模型的检索增强生成技术:综述 [译]原创 2024-05-09 14:27:50 · 1890 阅读 · 0 评论