Chapter 1 (Sample Space and Probability): Probabilistic models (概率模型)

本文详细介绍了概率模型的基础知识,包括样本空间、事件、序贯模型和概率律。讨论了概率模型中的关键概念,如样本空间、事件的和、积与差事件,并通过德摩根律进行证明。此外,还探讨了序贯模型,例如通过树形图来描述多次抛硬币实验。文章进一步解释了概率定律的性质,如减法和加法公式,并给出了若干问题以加深理解。最后,文章涉及离散模型与连续模型,特别是连续模型中的几何概型和长度作为概率分配的例子。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文为 I n t r o d u c t i o n Introduction Introduction t o to to P r o b a b i l i t y Probability Probability 的读书笔记

Probability Models 概率模型

  • A probabilistic model is a mathematical description of an uncertain situation. Its two main ingredients are listed below and are visualized in Fig. 1.2.
    在这里插入图片描述

Sample space: 样本空间

在这里插入图片描述

Sample Spaces and Events 样本空间和事件

  • Every probabilistic model involves an underlying process, called the experiment, that will produce exactly one out of several possible outcomes.
    • It is important to note that in our formulation of a probabilistic model, there is only one experiment. So, three tosses of a coin constitute (组成) a single experiment rather than three experiments.
  • The set of all possible outcomes is called the sample space of the experiment, and is denoted by Ω \Omega Ω.
  • A subset of the sample space, that is, a collection of possible outcomes, is called an event (事件 / 随机事件).
    • A A A B B B 为两个随机事件,事件 A ∪ B A\cup B AB 称为 A A A B B B和事件,也记为 A + B A+B A+B
    • 事件 A ∩ B A\cap B AB 称为 A A A B B B积事件,也记为 A B AB AB
    • 事件 A − B A- B AB 称为 A A A B B B差事件;注意到 A − B = A B ˉ A-B=A\bar B AB=ABˉ
    • 事件 Ω − A \Omega-A ΩA 称为 A A A补事件,也记为 A ˉ \bar A Aˉ A C A^C AC

  • 补充:De Morgan’s laws (德摩根律)
    ( ∪ n S n ) c = ∩ n S n c , ( ∩ n S n ) c = ∪ n S n c (\mathop{\cup}\limits_{n}S_n)^c=\mathop{\cap}\limits_{n}S_n^c,(\mathop{\cap}\limits_{n}S_n)^c=\mathop{\cup}\limits_{n}S_n^c (nSn)c=nSnc,(nSn)c=nSncPROOF
    [Hint: if x ∈ ( ∪ n S n ) c x\in(\mathop{\cup}\limits_{n}S_n)^c x(nSn)c, then x ∈ ∩ n S n c x\in\mathop{\cap}\limits_{n}S_n^c xnSnc]

Sequential Models 序贯模型

  • Many experiments have an inherently sequential character; for example, tossing a coin three times. It is then often useful to describe the experiment and the associated sample space by means of a tree-based sequential description(序贯树形图), as in Fig. 1.3.
    在这里插入图片描述

die: 骰子

Note that every node of the tree can be identified with an event. For example, the node labeled by a 1 can be identified with the event {(1, 1), (1, 2). (1, 3), (1, 4) } that the result of the first roll is 1.

Probability Laws 概率律

  • The probability law assigns to every event A A A. a number P ( A ) P(A) P(A), called the probability of A A A. satisfying the following axioms.
    在这里插入图片描述
  • Inference (推论):
    1 = P ( Ω ) = P ( Ω ∪ ∅ ) = P ( Ω ) + P ( ∅ ) = 1 + P ( ∅ ) ∴ P ( ∅ ) = 0 1=P(\Omega)=P(\Omega\cup\varnothing)=P(\Omega)+P(\varnothing)=1+P(\varnothing)\\\therefore P(\varnothing)=0 1=P(Ω)=P(Ω)=P(Ω)+P()=1+P()P()=0

Properties of Probability Laws

  • 减法公式 P ( A − B ) = P ( A B ˉ ) = P ( A ) − P ( A B ) P(A-B)=P(A\bar B)=P(A)-P(AB) P(AB)=P(ABˉ)=P(A)P(AB)
  • 加法公式 P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A B ) P(A\cup B)=P(A)+P(B)-P(AB) P(AB)=P(A)+P(B)P(AB)
    • 推广: P ( A ∪ B ∪ C ) = P ( A ) + P ( B ) + P ( C ) − P ( A B ) − P ( A C ) − P ( B C ) + P ( A B C ) P(A\cup B\cup C)=P(A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC) P(ABC)=P(A)+P(B)+P(C)P(AB)P(AC)P(BC)+P(ABC)

Problem 9

A partition of the sample space Ω \Omega Ω is a collection of disjoint events S 1 , . . . , S n S_1, ... , S_n S1,...,Sn such that Ω = ∪ i = 1 n S i \Omega = \cup_{i=1}^n S_i Ω=i=1nSi.

  • (a) Show that for any event A A A, we have
    P ( A ) = ∑ i = 1 n P ( A ∩ S i ) P(A)=\sum_{i=1}^nP(A\cap S_i) P(A)=i=1nP(ASi)
  • (b) Use part (a) to show that for any events A , B A, B A,B, and C C C, we have
    P ( A ) = P ( A ∩ B ) + P ( A ∩ C ) + P ( A ∩ B C ∩ C C ) − P ( A ∩ B ∩ C ) P(A)=P(A\cap B)+P(A\cap C)+P(A\cap B^C\cap C^C)-P(A\cap B\cap C) P(A)=P(AB)+P(AC)+P(ABCCC)P(ABC)

Problem 10.

Show the formula
P ( ( A ∩ B C ) ∪ ( A C ∩ B ) ) = P ( A ) + P ( B ) − 2 P ( A ∩ B ) , P((A\cap B^C)\cup(A^C\cap B))=P(A)+P(B)-2P(A\cap B), P((ABC)(ACB))=P(A)+P(B)2P(AB),which gives the probability that exactly one of the events A A A and B B B will occur.

SOLUTION
P ( ( A ∩ B C ) ∪ ( A C ∩ B ) ) = P ( A ∩ B C ) + P ( A C ∩ B ) = P ( A ) − P ( A ∩ B ) + P ( B ) − P ( A ∩ B ) \begin{aligned}&P((A\cap B^C)\cup(A^C\cap B))\\ =&P(A\cap B^C)+P(A^C\cap B)\\ =&P(A)-P(A\cap B)+P(B)-P(A\cap B)\end{aligned} ==P((ABC)(ACB))P(ABC)+P(ACB)P(A)P(AB)+P(B)P(AB)


Problem 11 Bonferroni’s inequality (邦费罗尼不等式)

  • (a) Prove that for any two events A A A and B B B, we have
    P ( A ∩ B ) ≥ P ( A ) + P ( B ) − 1 P(A\cap B)\geq P(A)+P(B)-1 P(AB)P(A)+P(B)1

SOLUTION

  • (a) We have P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A ∩ B ) P(A\cup B) = P(A) + P(B) - P(A\cap B) P(AB)=P(A)+P(B)P(AB) and P ( A ∪ B ) ≤ 1 P(A\cup B)\leq1 P(AB)1. which implies part (a).

也可以这么做: 1 + P ( A ∩ B ) = 2 P ( A ∩ B ) + P ( A ∩ B C ) + P ( A C ∩ B ) + P ( A C ∩ B C ) = ( P ( A ∩ B ) + P ( A ∩ B C ) ) + ( P ( A ∩ B ) + P ( A C ∩ B ) ) + P ( A C ∩ B C ) = P ( A ) + P ( B ) + P ( A C ∩ B C ) ≥ P ( A ) + P ( B ) 1+P(A\cap B)=2P(A\cap B)+P(A\cap B^C)+P(A^C\cap B)+P(A^C\cap B^C)=(P(A\cap B)+P(A\cap B^C))+(P(A\cap B)+P(A^C\cap B))+P(A^C\cap B^C)=P(A)+P(B)+P(A^C\cap B^C)\geq P(A)+P(B) 1+P(AB)=2P(AB)+P(ABC)+P(ACB)+P(ACBC)=(P(AB)+P(ABC))+(P(AB)+P(ACB))+P(ACBC)=P(A)+P(B)+P(ACBC)P(A)+P(B)


Problem 13. Continuity property of probabilities (概率的连续性)

  • ( a ) (a) (a) Let A 1 , A 2 , . . . A_1 , A_2, ... A1,A2,.... be an infinite sequence of events, which is “monotonically increasing,” meaning that A n ⊂ A n + 1 A_n\subset A_{n +1} AnAn+1 for every n n n. Let A = ∪ n = 1 ∞ A n A = \cup_{n=1}^\infty A_n A=n=1An. Show that P ( A ) = l i m n → ∞ P ( A n ) P(A) = lim_{n\rightarrow \infty} P(A_n ) P(A)=limnP(An)
    [Hint: Express the event A A A as a union of countably many disjoint sets.]
  • ( b ) (b) (b) Suppose now that the events are “monotonically decreasing,” i.e., A n + 1 ⊂ A n A_{n + 1}\subset A_n An+1An for every n n n. Let A = ∩ n = 1 ∞ A n A= \cap_{n=1}^\infty A_n A=n=1An . Show that P ( A ) = l i m n → + ∞ P ( A n ) P(A) = lim_{n\rightarrow +\infty} P(A_n ) P(A)=limn+P(An).
  • ( c ) (c) (c) Consider a probabilistic model whose sample space is the real line. Show that
    P ( [ 0 , ∞ ) ) = l i m n → ∞ P ( [ 0 , n ] ) l i m n → ∞ P ( [ n , ∞ ) ) = 0 P([0,\infty))=lim_{n\rightarrow\infty}P([0,n])\\ lim_{n\rightarrow\infty}P([n,\infty))=0 P([0,))=limnP([0,n])limnP([n,))=0

SOLUTION

  • (a) Let B 1 = A 1 B_1 = A_1 B1=A1 and, for n ≥ 2 , B n = A n ∩ A n − 1 C n\geq2, B_n = A_n\cap A_{n-1}^C n2,Bn=AnAn1C . The events B n B_n Bn are disjoint, and we have ∪ k = 1 n B k = A n \cup_{k=1}^n B_k= A_n k=1nBk=An, and ∪ k = 1 ∞ B k = A \cup_{k=1}^\infty B_k= A k=1Bk=A.
    P ( A ) = ∑ k = 1 ∞ P ( B k ) = P ( ∪ k = 1 ∞ B k ) = l i m n → ∞ P ( ∪ k = 1 n B k ) = l i m n → ∞ P ( A n ) P(A)=\sum_{k=1}^\infty P(B_k)=P(\cup_{k=1}^\infty B_k)=lim_{n\rightarrow \infty}P(\cup_{k=1}^n B_k)=lim_{n\rightarrow \infty} P(A_n) P(A)=k=1P(Bk)=P(k=1Bk)=limnP(k=1nBk)=limnP(An)
  • (b) [Hint: Apply the result of part (a) to the complements of the events P ( A C ) P(A^C) P(AC).]
  • ( c c c) For the first equality, use the result frorn part (a) with A n = [ 0 , n ] A_n= [0, n] An=[0,n] and A = [ 0 , ∞ ) A= [0, \infty) A=[0,). For the second, use the result from part (b) with A n = [ n , ∞ ) A_n= [n,\infty) An=[n,) and A = ∅ A = \varnothing A=.

Discrete Models 离散模型

离散概率律
在这里插入图片描述

Note that we are using here the simpler notation P ( s i ) P(s_i) P(si) to denote the probability of the event { s i } \{s_i\} {si} , instead of the more precise P ( { s i } ) P(\{ s_i\}) P({si}).


离散均匀概率律 (古典概型)

  • In the special case where the probabilities P ( s 1 ) P(s_1) P(s1), … , P ( s n ) P(s_n) P(sn) are all the same (by necessity equal to 1 / n 1/n 1/n), we obtain the following.
    在这里插入图片描述

Continuous Models 连续模型

  • Probabilistic models with continuous sample spaces differ from their discrete counterparts in that the probabilities of the single-element events may not be sufficient to characterize the probability law.
  • 几何概型:连续均匀概率律

Example 1.4

  • A wheel of fortune (幸运轮) is continuously calibrated from 0 to 1, so the possible outcomes of an experiment consisting of a single spin are the numbers in the interval n = [ 0 , 1 ] n = [0, 1] n=[0,1]. Assuming a fair wheel, it is appropriate to consider all outcomes equally likely, but what is the probability of the event consisting of a single element? It cannot be positive, because then, using the additivity axiom, it would follow that events with a sufficiently large number of elements would have probability larger than 1. Therefore, the probability of any event that consists of a single element must be 0.
  • In this example, it makes sense to assign probability b − a b - a ba to any subinterval [ a , b ] [a, b] [a,b] of [ 0 , 1 ] [0, 1] [0,1], and to calculate the probability of a more complicated set by evaluating its “length”.
  • The legitimacy of using length as a probability law hinges on the fact that the unit interval has an uncountably infinite number of elements.
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值