dp[i]数组含义:考虑下标i(包括i)以内的房间,最多可以偷窃的金额为dp[i]
注意!:dp[1] = max(nums[0], nums[1])而不是dp[1] = nums[1],因为dp[i]数组的定义是第i个房间能够偷窃到的最大金额
class Solution {
public:
int rob(vector<int>& nums) {
if(nums.size() == 1) return nums[0];
if(nums.size() == 2) return max(nums[0], nums[1]);
vector<int> dp(nums.size(), 0);
dp[0] = nums[0];
dp[1] = max(nums[0], nums[1]);
for(int i = 2; i < nums.size(); i++){
dp[i] = max(dp[i-1], dp[i-2] + nums[i]);
//cout<<"dp"<<i<<": "<<dp[i]<<endl;
}
return dp[nums.size() - 1];
}
};
与I的区别就是房间是一个圈,则首尾是否相邻也得考虑
对于一个数组,成环的话主要有以下三种情况
- 考虑不包含首尾元素
- 考虑不包含尾元素
- 考虑不包含首元素
而情况二和三都包括一了,故只需考虑二和三,其余的就和打家劫舍I一样了。
class Solution {
public:
int rob(vector<int>& nums) {
if(nums.size() == 1) return nums[0];
if(nums.size() == 2) return max(nums[0], nums[1]);
int rob1 = robRang(nums, 0, nums.size() - 2);
int rob2 = robRang(nums, 1, nums.size()-1); //前闭后闭
return max(rob1, rob2);
}
int robRang(vector<int>& nums, int start, int end){
if(start == end) return nums[start];
vector<int> dp(nums.size());
dp[start] = nums[start];
dp[start + 1] = max(nums[start], nums[start + 1]);
for(int i = start + 2; i <= end; i++){
dp[i] = max(dp[i-1], dp[i-2] + nums[i]);
}
return dp[end];
}
};
和上面两题的区别就是,房屋之间以树形结构相连。
对树遍历的话就是前中后序(深度优先搜索)还是层序遍历(广度优先搜索)了。
而本题需要通过递归函数返回值来做下一步计算,故得用后序遍历。
法一:(暴力递归)
int rob(TreeNode* root){
if(!root) return 0;
if(!root->left && !root->right) return root->val;
//偷父节点
int val1 = root->val;
//偷了父节点,则其孩子就不能偷了
if(root->left)
val1 += rob(root->left->left) + rob(root->left->right);
if(root->right)
val1 += rob(root->right->left) + rob(root->right->right);
//不偷父节点
int val2 = rob(root->left) + rob(root->right);
//返回二者最大值
return max(val1, val2);
}
以上有重复计算,故可以用记忆话搜索,如果已经计算过了就不要再计算了。
unordered_map<TreeNode*, int> umap;
int rob(TreeNode* root){
if(!root) return 0;
if(!root->left && !root->right) return root->val;
if(umap[root]) return umap[root];
//偷父节点
int val1 = root->val;
//偷了父节点,则其孩子就不能偷了
if(root->left)
val1 += rob(root->left->left) + rob(root->left->right);
if(root->right)
val1 += rob(root->right->left) + rob(root->right->right);
//不偷父节点
int val2 = rob(root->left) + rob(root->right);
umap[root] = max(val1, val2);
//返回二者最大值
return max(val1, val2);
}
法二:动态规划
上面的暴力方法,对一个节点的偷与不偷并没有做记录,而是需要实时计算。
而动态规划是采用状态转移容器来记录结果,这里用一个长度为2的数组,来记录当前节点偷与不偷所得的最大金额。
class Solution {
public:
int rob(TreeNode* root) {
vector<int> result = robTree(root);
return max(result[0], result[1]);
}
//长度为2的数组,下标0:不偷,下标1:偷
vector<int> robTree(TreeNode* cur){
if(!cur) return vector<int>{0, 0};
vector<int> left = robTree(cur->left);
vector<int> right = robTree(cur->right);
//偷cur
int val1 = cur->val + left[0] + right[0];
//不偷cur
int val2 = max(left[0], left[1]) + max(right[0], right[1]);
return {val2, val1};
}
};