- dp数组:dp[i][j]表示区间i~j之间是否为回文串
- 递推公式:
当s[i] == s[j]时,
若i == j,则此时肯定为回文子串,dp[i][j] = true;
若j - i = 1,则此时也为回文子串,dp[i][j] = true;
若j - i > 1,则需要判断i + 1 ~ j-1是否为回文串,即dp[i][j] = dp[i+1][j-1]是否为true;
当s[i] != s[j],则 dp[i][j] =false;
3.初始化, dp[i][j]初始化为false; - 遍历顺序,由递推公式可知dp[i][j]需由dp[i+1][j-1]推导而来。则遍历顺序为从下到上,从左到右。这样才可以保证dp[i+1][j-1都是经过计算了的。
- 推导dp数组。dp数组有几个true,就有几个回文子串。
注意dp[i][j]的定义,可以知道j一定是大于等于j的,故二维数组只有上半部分被计算了。
class Solution {
public:
int countSubstrings(string s) {
//dp[i][j]表示区间i~j是否为回文子串
vector<vector<bool> > dp(s.size() + 1,
vector<bool>(s.size() + 1));
int res = 0;
for(int i = s.size(); i >= 1; i--){
for(int j = i; j <= s.size(); j++){
if(s[i-1] == s[j-1]){
if(j - i <= 1){
dp[i][j] = true;
res++;
}
else{
if(dp[i+1][j-1]){
dp[i][j] = true;
res++;
}
}
}
else{
dp[i][j] = false;
}
}
}
return res;
}
};
- dp[i][j]: 区间i ~ j内的最长回文子串长度
- 递推公式:
若s[i] == s[j]
则dp[i][j] = dp[i + 1][j- 1] + 2
若s[i] != s[j]
则dp[i][j] = max(dp[i][j-1], dp[i+1][j])
class Solution {
public:
int longestPalindromeSubseq(string s) {
vector<vector<int> > dp(s.size() + 1,
vector<int>(s.size() + 1, 0));
for(int i = 1; i <= s.size(); i++)
dp[i][i] = 1;
for(int i = s.size()-1 ; i >= 1; i--){
for(int j = i + 1 ; j <= s.size(); j++){
if(s[i-1] == s[j-1]){
dp[i][j] = dp[i+1][j-1] +
2;
}
else{
dp[i][j] = max(dp[i][j-1], dp[i+1][j]);
}
}
}
return dp[1][s.size()];
}
};