leetcode 647回文子串 && 最长回文子串

在这里插入图片描述

  1. dp数组:dp[i][j]表示区间i~j之间是否为回文串
  2. 递推公式:
    当s[i] == s[j]时,
    若i == j,则此时肯定为回文子串,dp[i][j] = true;
    若j - i = 1,则此时也为回文子串,dp[i][j] = true;
    若j - i > 1,则需要判断i + 1 ~ j-1是否为回文串,即dp[i][j] = dp[i+1][j-1]是否为true;
    当s[i] != s[j],则 dp[i][j] =false;
    3.初始化, dp[i][j]初始化为false;
  3. 遍历顺序,由递推公式可知dp[i][j]需由dp[i+1][j-1]推导而来。则遍历顺序为从下到上,从左到右。这样才可以保证dp[i+1][j-1都是经过计算了的。
  4. 推导dp数组。dp数组有几个true,就有几个回文子串。
    注意dp[i][j]的定义,可以知道j一定是大于等于j的,故二维数组只有上半部分被计算了。
class Solution {
public:
    int countSubstrings(string s) {
        //dp[i][j]表示区间i~j是否为回文子串
        vector<vector<bool> > dp(s.size() + 1, 
        vector<bool>(s.size() + 1));

        int res = 0;
        

        for(int i = s.size(); i >= 1; i--){
            for(int j = i; j <= s.size(); j++){
                if(s[i-1] == s[j-1]){
                    if(j - i <= 1){
                        dp[i][j] = true;
                        res++;
                    }
                    else{
                        if(dp[i+1][j-1]){
                            dp[i][j] = true;
                            res++;
                        }
                    }
                    
                }
                else{
                    dp[i][j] = false;
                }
            }
        }
        return res;
    }

        
};

在这里插入图片描述

  1. dp[i][j]: 区间i ~ j内的最长回文子串长度
  2. 递推公式:
    若s[i] == s[j]
    则dp[i][j] = dp[i + 1][j- 1] + 2
    若s[i] != s[j]
    则dp[i][j] = max(dp[i][j-1], dp[i+1][j])
class Solution {
public:
    int longestPalindromeSubseq(string s) {
        vector<vector<int> > dp(s.size() + 1, 
        vector<int>(s.size() + 1, 0));

        for(int i = 1; i <= s.size(); i++)
            dp[i][i] = 1;
        

        for(int i = s.size()-1 ; i >= 1; i--){
            for(int j = i + 1 ; j <= s.size(); j++){
                if(s[i-1] == s[j-1]){
                    dp[i][j] = dp[i+1][j-1] +
                          2; 
                }
                else{
                    dp[i][j] = max(dp[i][j-1], dp[i+1][j]);
                }
            }
        }
        return dp[1][s.size()];
    }
};
根据提供的引用内容,有三种方法可以解决LeetCode上的最长回文子串问题。 方法一是使用扩展中心法优化,即从左向右遍历字符串,找到连续相同字符组成的子串作为扩展中心,然后从该中心向左右扩展,找到最长的回文子串。这个方法的时间复杂度为O(n²)。\[1\] 方法二是直接循环字符串,判断子串是否是回文子串,然后得到最长回文子串。这个方法的时间复杂度为O(n³),效率较低。\[2\] 方法三是双层for循环遍历所有子串可能,然后再对比是否反向和正向是一样的。这个方法的时间复杂度也为O(n³),效率较低。\[3\] 综上所述,方法一是解决LeetCode最长回文子串问题的最优解法。 #### 引用[.reference_title] - *1* [LeetCode_5_最长回文子串](https://blog.csdn.net/qq_38975553/article/details/109222153)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [Leetcode-最长回文子串](https://blog.csdn.net/duffon_ze/article/details/86691293)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [LeetCode 第5题:最长回文子串(Python3解法)](https://blog.csdn.net/weixin_43490422/article/details/126479629)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值