LeeCode 322-零钱兑换(经典 动态规划)

322.零钱兑换(经典 动态规划)

前言

博主是前大厂程序猿,不定期分享前端知识与算法。

  • 公众号:FE Corner
  • wx小程序:FE Corner

欢迎关注,一起探索知识~

题目地址:322. 零钱兑换(中等)

标签:数组动态规划

题目描述:
给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。
计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。
你可以认为每种硬币的数量是无限的。
在这里插入图片描述

思路

不了解动态规划的小伙伴,请前往博主的这篇文章对动态规划做一个初步入门。LeeCode 509-斐波那契数(动态规划入门),记住动态规划的三板斧即可:

  • 最优子结构(存在并找到最优子结构才能计算原问题的最值)
  • 状态转移方程(解决问题的核心)
  • 重叠子问题(采用暴力穷举的方法,效率会很低)

题干清晰的提出了最值求解,最少的硬币个数?对于计算机而言,就是把所有的可能全部穷举,再找到硬币数量最少的一个解法。

暴力递归

  • 最优子结构:首先要确认该题是存在最优子结构的,以题目中的例子一为参考,要找到和为11的最少硬币,可以转移至找到和为10,9,6最少硬币数的子问题上,如果知道这了这三个子问题的答案,那么数量加1(在加上一枚1/2/5),这些子问题的最小值就是最少数量硬币和为11的答案。而背包中硬币的数量又是无限的,所以每个子问题之间没有牵制,是独立的个体。
  • 状态 转移 方程:
    • 状态: 硬币数量无限,每个硬币的面值是固定的,每次子问题变化的其实是amount,也就是每次求解子问题的目标金额。
    • 转移:目标金额为什么会转移?因为每次选择硬币后,下一次子问题的求和金额就会变化。
    • 方程:本节研讨暴力递归,因此是从上至下的转移,因此定义一个dp(amount),amount就是每次子问题就和的目标amount。

根据上述分析,js代码如下:(注释详解)

/**
 * @param {number[]} coins
 * @param {number} amount
 * @return {number}
 */
var coinChange = function(coins, amount) {
    return dp(coins,amount)
};
const dp = (coins,amount) =>{
    // 目标金额为0时,不需硬币,此分支凑出答案
    if(amount===0){
        return 0
    }
    // 剪到最后,无法正好凑出答案,即此分支子问题无解,返回-1
    if(amount < 0){
        return -1
    }
    // 初实化最大值答案,避免之后小于求解子问题最小值(最大不会超过金额+1,因为全是1的硬币也只需要amount个)
    let res = amount+1
    for(let coin of coins){  
        // 求子问题  
        let sub = dp(coins,amount-coin)
        if(sub !== -1){
            // 存在子问题,则+1,选择最优子问题,
            //这里加一的问题,上文已经提到了,因为将问题分解时,就是原问题 = 子问题 +1 (这个1是1个硬币)
            res = Math.min(sub+1,res)
        }
    }
    return res === amount+1 ? -1: res
}

尝试复制的小伙伴可能发现了上面的代码无法通过测试,这是因为暴力解法存在重叠子问题其实这与斐波那契数是一个道理:
在这里插入图片描述
我们可以通过这个树结构发现,这个暴力递归算法的时间复杂度是指数级别的,因此我们需要进行剪枝操作。

优化-剪枝

与之前斐波那契数列类似,只需要稍加修改,就可以通过memory消除子问题:

/**
 * @param {number[]} coins
 * @param {number} amount
 * @return {number}
 */
var coinChange = function(coins, amount) {
    //初始值保证不再解集即可,仅作为子问题是否求解过的flag
    let memory = new Array(amount+1).fill(-6)
    return dp(memory,coins,amount)
};
const dp = (memory,coins,amount) =>{
    // 目标金额为0时,不需硬币,此分支凑出答案
    if(amount===0){
        return 0
    }
    // 剪到最后,无法正好凑出答案,即此分支子问题无解,返回-1
    if(amount < 0){
        return -1
    }
    // 如果该子问题已经求解过,则直接返回
    if(memory[amount] !== -6){
        return memory[amount]
    }
    // 初实化最大值答案,避免之后小于求解子问题最小值(最大不会超过金额+1,因为全是1的硬币也只需要amount个)
    let res = amount+1
    for(let coin of coins){  
        // 求子问题  
        let sub = dp(memory,coins,amount-coin)
        if(sub !== -1){
            // 存在子问题,则+1,选择最优子问题,
            //这里加一的问题,上文已经提到了,因为将问题分解时,就是原问题 = 子问题 +1 (这个1是1个硬币)
            res = Math.min(sub+1,res)
        }
    }
    //记录子问题的值
     memory[amount] =(res == amount+1) ? -1 : res
    return memory[amount]
}
  • 时间复杂度:显然子问题的个数不会超过amount(全是面值1的硬币也只需要amount个),处理一个子问题的时间也知识coins的数量(n),因此时间复杂度为O(amount*n),较之前的指数级大大减小,也可以通过leecode的测试了。

迭代推解

可以自顶向下递归,自然也可以自底向上迭代推解,思路也是类似的,都是将amount作为转移的变量,详看js代码:

var coinChange = function(coins,amount) {  
    let dp = new Array(amount+1).fill(amount + 1);
    // 基础的边界值
    dp[0] = 0;
    // 遍历整个dp数组,找到所有节点的所有可能解
    for (let i = 0; i < dp.length; i++) {
        // 内层迭代找出最小解
        for (let j = 0; j < coins.length; j++) {
            // 子问题可能有解则继续
            if (i - coins[j] >= 0) {
               dp[i] = Math.min(dp[i], 1 + dp[i - coins[j]]);
            }
        }
    }
    return (dp[amount] == amount + 1) ? -1 : dp[amount];
};

小结

其实无论是斐波那契数列,还是最小硬币数量,都是计算机穷举的过程,难点就在于找出状态转移方程,之后如何消除重叠子问题也就迎刃而解了,memory其实也就是空间换时间的经典做法,所有的一切都是你可以列出暴力递归之后的优化,因此可不要小瞧了自上而下的暴力递归。
在这里插入图片描述
博主是前大厂程序猿,不定期分享前端知识与算法。

  • 公众号:FE Corner
  • wx小程序:FE Corner
    欢迎关注,一起探索知识~
  • 20
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值