堆排序
注意,堆这个结构需要知道什么是满二叉树、完全二叉树。堆就是完全二叉树。
堆
使用数组存储数据,用数组模拟二叉堆结构,此时下标的关系有:
- 父结点 i 的左子结点为 2i + 1,右子结点为 2i + 2
- 子结点 i 找父结点公式为:(i - 1) / 2
堆分大根堆和小根堆,每一个结点为子树的最大值称为大根堆,同理可知小根堆。
以大根堆为例学习堆排序算法,小根堆同理做一些转换即可。
heapInsert
构建堆时,heapInsert 是非常重要的构建方法。
建立 i 个数的堆,算法的时间复杂度为
l o g ( ! ( i − 1 ) ) = l o g 1 + l o g 2 + ⋅ ⋅ ⋅ + l o g ( i − 1 ) log(!(i-1)) = log1 + log2 + ··· + log(i-1) log(!(i−1))=log1+log2+⋅⋅⋅+log(i−1)
数学证明,最终得到建立过程的时间复杂度为 O(N)。
public static void heapInsert(int[] arr, int i) {
//每一次插入新结点,与父结点做比较,调整堆结构
while (arr[i] > arr[(i - 1) / 2]) {
swap(arr, i, (i - 1) / 2);
i =