1742. Maximum Number of Balls in a Box

You are working in a ball factory where you have n balls numbered from lowLimit up to highLimit inclusive (i.e., n == highLimit - lowLimit + 1), and an infinite number of boxes numbered from 1 to infinity.

Your job at this factory is to put each ball in the box with a number equal to the sum of digits of the ball's number. For example, the ball number 321 will be put in the box number 3 + 2 + 1 = 6 and the ball number 10 will be put in the box number 1 + 0 = 1.

Given two integers lowLimit and highLimit, return the number of balls in the box with the most balls.

 

Example 1:

Input: lowLimit = 1, highLimit = 10
Output: 2
Explanation:
Box Number:  1 2 3 4 5 6 7 8 9 10 11 ...
Ball Count:  2 1 1 1 1 1 1 1 1 0  0  ...
Box 1 has the most number of balls with 2 balls.

Example 2:

Input: lowLimit = 5, highLimit = 15
Output: 2
Explanation:
Box Number:  1 2 3 4 5 6 7 8 9 10 11 ...
Ball Count:  1 1 1 1 2 2 1 1 1 0  0  ...
Boxes 5 and 6 have the most number of balls with 2 balls in each.

Example 3:

Input: lowLimit = 19, highLimit = 28
Output: 2
Explanation:
Box Number:  1 2 3 4 5 6 7 8 9 10 11 12 ...
Ball Count:  0 1 1 1 1 1 1 1 1 2  0  0  ...
Box 10 has the most number of balls with 2 balls.

 

Constraints:

  • 1 <= lowLimit <= highLimit <= 105

继续水

class Solution {
    public int countBalls(int lowLimit, int highLimit) {
        int[] box = new int[46];
        for(int i=lowLimit; i<=highLimit; i++) {
        	if(i>=1&&i<10) {
        		box[i]++;
        	}else if (i>=10&&i<100){
        		box[i/10 + i%10]++;
        	}else if (i>=100&&i<1000) {
        		box[i/100 + (i%100)/10 + i%10]++;
        	}else if (i>=1000&&i<10000) {
        		box[i/1000 + (i%1000)/100 + (i%1000)%100/10 + i%10]++;
        	}else if(i>=10000&&i<100000) {
        		box[i/10000 + (i%10000)/1000 + (i%10000)%1000/100 + ((i%10000)%1000)%100/10 + i%10]++;
        	}else {
        		box[1]++;
        	}
        }
        
        int max=0;
        for(int j=0; j<46; j++) {
        	if(box[j]>max) {max=box[j];}
        }
        return max;
    }
}

 

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值