什么叫冷备用状态_冷知识 | 腊月为什么叫“腊”月?

5164a59ff7fe5989ff4fa75c70ffb327.png

前两天朋友来串门,送了一份腊肉,

在开心享用的同时,一个问题突然涌进了脑海——

腊肉,为什么叫腊肉呢?

它跟我们当前所处的腊月有什么关系?

还有经常喝到的腊八粥,盛开在寒冬里的腊梅,怎么都有个腊字?

a690920afd232ae08b7ce25819d2d2a2.png

带着这样的疑问,我埋进故纸堆里仔细查了一番。

哦,原来“腊”除了“là”的读音以外,还有一个读音叫“xī”,写出来是繁体的“臘”。

49951ac8c8c5d59e9f76d63b8af6716f.png

在繁简体还没有改造的时候,臘和腊是分别指代不同意思的——

腊:干肉(从月从昔);

臘——说文曰:冬至后三戌,臘祭百神。

所以臘,指的就是祭祀专用肉。

我们都知道,古代人的祭祀不但重要而且频繁

615def28a8e61c0ed1590555b639f59e.png

以帝王为例,除了要祭祀天地日月,还要分春夏秋冬进行祭祀,

其他时候遇到一些突发事件比如干旱,也需要皇帝亲自上阵进行祈雨。

所以作为祭祀的器具,我在青铜鼎那篇里有写过。

古人用圆鼎装肉祭天,方鼎装五谷祭地

冷知识 | 为什么青铜鼎有圆有方?

而为了规范化操作,“照章祭祀”,古人很早就对年末祭祀做了说明——

汉朝应劭《风俗通义》载:夏曰嘉平,殷曰清祀也,周曰大蠟,汉改为臘。臘者,獵也,言田獵取禽兽,以祭祀其先祖。

翻译一下,就是说:

年底了,动物们为了过冬也养肥了,是时候出门打猎了,然后拿猎来的“禽兽”祭祀祖先。

另外,这里出现了一个生字“蠟”——

《礼记.郊特牲》载:天子大蜡八,伊耆氏始为蜡。蜡也者,索也。

这里的“蠟八”指代的是“蠟祭八神”,

但是关于是哪八神,朝代不同解释也不同,

有的指天地日月,有的指阴阳四方,

好在都是指的岁末祭祀,所以到了汉代就统一用“臘”字指代了。

而且我们前边提到的“臘祭百神”,翻译过来也不难理解——

就是说年底到了,各路神仙辛苦了,大家集中一下开个年会,

除了汇报工作之外,大家也一起吃顿好的。

f58d7eb0c3768c0ed02e878134437cb4.png

因此,由于一整个月都用来搞“祭祀年会”,

包括我们熟知的“二十三祭灶,二十四扫尘”等等,

几乎是每一天都有“规定动作”,

所以把整个月份冠以“臘”字,也就顺理成章了~

怎么样,知道了腊月的由来,是不是连年底的聚餐都有种神仙开会的感觉了呢?

——p.s.图片来自网络

更多有趣内容,欢迎关注公众号(lxxspark)

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值