经典算法动态规划之商品最优购买问题

本文介绍了一种使用动态规划算法解决最小费用购物问题的方法。通过分析题目,确定问题满足无后效性和重叠子问题,适合采用动态规划。在遍历dp表过程中,根据优惠方案更新状态的最小值,最终得到完整的dp表,实现备忘录功能。文中给出了数据设计、测试用例及算法图解,展示了如何计算整个最小优惠价格。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述

最小费用购物:
商店中每种商品都有标价。例如,一朵花的价格是2元,一个花瓶的价格是5元。为了吸引客户,商店提供了一组优惠价格商品。优惠价格是把一种或者多种商品分成一组,并且降价销售。例如:三朵花的价格不是6元而是5元。2个花瓶加一朵花的优惠价格是10元。是设计一种算法,计算出某一顾客所购商品应付的最小费用。

题目分析

首先我们考虑这样的问题,当我们通过一种优惠方案以后,那么会产生一个新的子问题,而且产生同样的状态可能不止一条路经,但是这个状态的最小值只有一个,那么这个题目是满足无后效性,又有大量重叠子问题,还符合最优化原理,那么我们选择动态规划来做这道题目是十分合适的。

算法思想实现

通过遍历整张dp表, 我们可以从(0, 0, 0, 0, 0)到(a,b,c,d,e)一直遍历,我们分别以此此判断整个表的每个状态的最小值,当满足某种优惠条件时候,我们把当前状态减去一个优惠方案,会得到一个之前已经算过的重复状态,我们可以通过查表法轻松的得到这个答案,如果满足多个优惠方案,那么我们需要把这几个方案返回的最小值计算出来,填入表中。如果不满足,直接返回单价×数量。这样经过一次遍历以后,我们就可以完整的得到这个dp表,并且实现了备忘录功能,消除了大量重叠子问题。

代码设计思路

我们可以通过一个多维数组来实现这个dp表,每次遍历表中的每个数据,分支进行判断所有优惠方案,并且返回每个分支的值,再这些值当中取得一个最小值放入表中。
数据设计以及测试用例:
2 //代表用户购买两种商品
7 8 2 //七号商品,买8个,单价两元
8 11 5 //八号商品,买11个,单价五元

2 //两种优惠方案
1 7 3 5 //优惠方案涉及1种商品,编号为7,需要3个,优惠价格为5元
2 7 1 8 2 10 // 优惠方案涉及2种商品,编号为7,需要1个。编号为8,需要两个。优惠价格为10元

最后得到整个最小优惠价格:价格的期望值为60。

算法图解

在这里插入图片描述

代码展示


def MinCost():
    # 创建一个dp五维数组表,用来做成备忘录 dp[6][6][6][6][6]
    dp = []
    for a in range(10):
        dp.append([])
        for b in range(10):
            dp[a].append([])
            for c in range(10):
                dp[a][b].append([])
                for d in range(10):
                    dp[a][b][c].append([])
                    for e in range(10):
                        dp[a][b][c][d].append(0)

    # 定义一个商品列表 goods[5][3]
    goods = []
    for a in range(5):
        goods.append([])
        for b in range(3)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值