题目描述如下:
7331是一个特殊的质数,因为我们去掉个位得到的733是一个质数;再次去掉个位得到的73又是一个质数;再去掉个位后得到的7依然是一个质数。对于形似这种的质数,我们称呼它为特殊质数。
写一个程序对给定的待求特殊质数的位数 N (1≤N≤8)求出所有对应位数的特殊质数(注意:数字1不被看作一个质数)。
输入包括一个整数,为待求特殊质数的位数 N。
输出长度为N的特殊质数列表,每行一个。
样例输入复制
4
样例输出复制
2333 2339 2393 2399 2939 3119 3137 3733 3739 3793 3797 5939 7193 7331 7333 7393
刚看到这个题的时候感觉很简单,起码思路明白。但是却怎么也通过不了,问题就是超时,通过优化程序,优化算法,可以用深搜解决这个问题。以下就是两种代码实现。
方法一:枚举(超时但思路简单)
#include<iostream>
#include<cmath>
using namespace std;
int main()
{
int n;
cin>>n;
for(int i=pow(10,n-1)*2+1;i<pow(10,n);i+=2)
{
int cnt=0,a=i;
while(a)
{
int j;
for(j=2;j<=sqrt(a);j++)
{
if(a%j==0)
break;
}
if(j>sqrt(a))
{
cnt++;
}
a/=10;
}
if(cnt==n)
cout<<i<<endl;
}
return 0;
}
方法二:dfs(效率高,代码简洁)
#include<iostream>
#include<cmath>
using namespace std;
int n;
bool isprime(int x)
{
for(int i=2;i<=sqrt(x);i++)
{
if(x%i==0)
return false;
}
return true;
}
void dfs(int sum,int cur)
{
if(cur==n)
{
cout<<sum<<endl;
}
for(int i=1;i<=9;i++)
{
if(i%2==0) continue;
int asum=sum*10+i;
if(isprime(asum))
dfs(asum,cur+1);
}
}
int main()
{
cin>>n;
dfs(2,1);
dfs(3,1);
dfs(5,1);
dfs(7,1);
return 0;
}