蓝桥杯:特殊的质数肋骨(逐渐去掉低位仍是质数的数,特殊质数)递归解法

博客介绍了如何解决蓝桥杯竞赛中关于特殊质数的问题,即从右向左逐次切掉数字,剩余部分仍为质数的数字。文章提到初始错误的穷举方法,并提出从最短数字开始判断以优化效率的递归策略。通过判断质数,将质数乘以10加上任意数字进行递归,确保有效剪枝。
摘要由CSDN通过智能技术生成

蓝桥杯:特殊的质数肋骨(逐渐去掉低位仍是质数的数,特殊质数)递归解法

问题描述

农民约翰母牛总是产生最好的肋骨。你能通过农民约翰和美国农业部标记在每根肋骨上的数字认出它们。农民约翰确定他卖给买方的是真正的质数肋骨,是因为从右边开始切下肋骨,每次还剩下的肋骨上的数字都组成一个质数。

例如有四根肋骨的数字分别是:7 3 3 1,那么全部肋骨上的数字 7331是质数;三根肋骨 733是质数;二根肋骨 73 是质数;当然,最后一根肋骨 7 也是质数。7331 被叫做长度 4 的特殊质数。

写一个程序对给定的肋骨的数目 N (1<=N<=8),求出所有的特殊质数。数字1不被看作一个质数。
输入格式
  单独的一行包含N。
输出格式
  按顺序输出长度为 N 的特殊质数,每行一个。
样例输入

4

样例输出

2333

2339

2393

2399

2939

3119

3137

3733

3739

3793

3797

5939

7193

7331

7333

7393

思路

注意题目有这么一句话:↓

例如有四根肋骨的数字分别是:7 3 3 1,那么全部肋骨上的数字 7331是质数;三根肋骨 733是质数;二根肋骨 73 是质数;当然,最后一根肋骨 7 也是质数。7331 被叫做长度 4 的特殊质数。

一开始看到我以为是穷举所有数的组合,然后从长度为4的开始判断,一直到长度为1
即:判断7331,判断733,判断73,判断7,后来发现这是一个耗时的方法

  • 应该从短的数字开始判断,就能够有效剪枝

比如先判断 7 是不是质数,然后判断 73,然后判断 733,最后是7331
这时候我明白题目为啥要从右边切了:判断的顺序和进位的规则一致

  • 如果当前数字 x 是质数,把 x 乘以10,加上任意数字,再判断

这样可以保证每次递归传进去的 x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值