蓝桥杯:特殊的质数肋骨(逐渐去掉低位仍是质数的数,特殊质数)递归解法
问题描述
农民约翰母牛总是产生最好的肋骨。你能通过农民约翰和美国农业部标记在每根肋骨上的数字认出它们。农民约翰确定他卖给买方的是真正的质数肋骨,是因为从右边开始切下肋骨,每次还剩下的肋骨上的数字都组成一个质数。
例如有四根肋骨的数字分别是:7 3 3 1,那么全部肋骨上的数字 7331是质数;三根肋骨 733是质数;二根肋骨 73 是质数;当然,最后一根肋骨 7 也是质数。7331 被叫做长度 4 的特殊质数。
写一个程序对给定的肋骨的数目 N (1<=N<=8),求出所有的特殊质数。数字1不被看作一个质数。
输入格式
单独的一行包含N。
输出格式
按顺序输出长度为 N 的特殊质数,每行一个。
样例输入
4
样例输出
2333
2339
2393
2399
2939
3119
3137
3733
3739
3793
3797
5939
7193
7331
7333
7393
思路
注意题目有这么一句话:↓
例如有四根肋骨的数字分别是:7 3 3 1,那么全部肋骨上的数字 7331是质数;三根肋骨 733是质数;二根肋骨 73 是质数;当然,最后一根肋骨 7 也是质数。7331 被叫做长度 4 的特殊质数。
一开始看到我以为是穷举所有数的组合,然后从长度为4的开始判断,一直到长度为1
即:判断7331,判断733,判断73,判断7,后来发现这是一个耗时的方法
- 应该从短的数字开始判断,就能够有效剪枝
比如先判断 7 是不是质数,然后判断 73,然后判断 733,最后是7331
这时候我明白题目为啥要从右边切了:判断的顺序和进位的规则一致
- 如果当前数字 x 是质数,把 x 乘以10,加上任意数字,再判断
这样可以保证每次递归传进去的 x