weixin_42453761
码龄7年
关注
提问 私信
  • 博客:23,493
    问答:595
    24,088
    总访问量
  • 29
    原创
  • 2,348,172
    排名
  • 4
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2018-06-13
博客简介:

weixin_42453761的博客

查看详细资料
个人成就
  • 获得18次点赞
  • 内容获得8次评论
  • 获得68次收藏
创作历程
  • 12篇
    2021年
  • 17篇
    2020年
成就勋章
创作活动更多

开源数据库 KWDB 社区征文大赛,赢取千元创作基金!

提交参赛作品,有机会冲刺至高2000元的创作基金,快来参与吧!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

java 第14周

分割文件import java.io.*;public class abs { public static void main(String[] args) throws Exception { // Check usage if (args.length != 2) { System.out.println("Usage: java Exercise17_10 SourceFile numberOfPieces");
原创
发布博客 2021.06.07 ·
178 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

tensorflow 存模型——指定存几个模型

If you use your own tf.Session() for the training:In order to keep the intermediate checkpoints and not the last 5, you need to change 2 parameters in the tf.train.Saver():max_to_keep - indicates the maximum number of recent checkpoint files to keep. As
原创
发布博客 2021.06.05 ·
200 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

java 13周

public class Hello{ private double realPart; private double imaginPart; public Hello(double r,double i){ this.realPart = r; this.imaginPart = i; } public Hello(){ realPart = 0; imaginPart = 0; } publ.
原创
发布博客 2021.05.31 ·
147 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

java 第十二周

import java.text.SimpleDateFormat;import java.util.ArrayList;import java.util.Date;import java.util.Iterator;class Account{ private int id = 0; //账户名 private double balance = 0; //余额 static private double annualInterestRate = 0; ..
原创
发布博客 2021.05.17 ·
106 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

java 算法 第六周 类和对象

// **8.9class RegularPolygon { private int n = 3; private double side = 1; private double x = 0, y = 0; final static double PI = 3.1415926; // 默认无参构造方法 public RegularPolygon() {} // 指定边数和边长,中心在(0, 0)的构造方法 public RegularPoly
原创
发布博客 2021.04.26 ·
125 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

java第五周算法题

Luhn算法实现信用卡验证import java.util.Scanner;public class Hello{ public static void main(String[] args) { System.out.println("Please input your credit card number:"); Scanner input = new Scanner(System.in); int sumOdd
原创
发布博客 2021.04.12 ·
68 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

java 第四周

/** * Created by SiceLab on 2021/3/29. */import java.util.Scanner;public class SN { public static void main(String[] args) { Scanner sc = new Scanner(System.in); while (true) { System.out.println("Ente
原创
发布博客 2021.03.29 ·
53 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

allenNLP使用手册

安装1、下载GitHub文件git clone https://github.com/allenai/allennlp.git2、创建环境conda create -n allennlp python=3.63、激活环境,并下载依赖文件1)激活环境source activate allennlp2)进入下载GitHub下载的文件夹3)下载依赖文件pip install -r dev-requirements.txt4、测试allennlp运行allennlp train [-h]
原创
发布博客 2021.03.22 ·
390 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

研究生java实验课第三周

题目:You are playing the following Bulls and Cows game with your friend: You write down a number and ask your friend to guess what the number is. Each time your friend makes a guess, you provide a hint that indicates how many digits in said guess match your
原创
发布博客 2021.03.22 ·
96 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

RAHP 复现细节 用于电子商务问答领域判断答案是否正确

整体模型图1. emb使用字符级嵌入(CNN)和词嵌入(Glove)获得每个词的低维表示2. 双向LSTM编码 emb注意:每个word都保留LSTM每个中间结果的隐藏层 hi,并非只用最后的ht,如图中的黄色方块。(以下用c表示h)3. QA 交互,双向AttentionQ->A将question 的每一个词和answer的所有词做Attention:(公式的La是answer句子长度)sim是两向量的内积整合权重得到,question的每个词的向量表示。同理将
原创
发布博客 2021.03.10 ·
254 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

谷歌采样修正的双塔模型

贡献提出In-batch loss function 和 流数据频率估计方法。双塔网络算法原理利用双塔模型构架推荐系统,首先建立两个参数embedding函数,把query和候选item映射到k维向量空间,模型的输出为二者的embedding内积。模型结构如图所示:In-batch loss function推荐问题可以看作是,给定query X,从M个item中得到y的概率可以利用softmax函数计算:考虑反馈 ri, 加权对数似然损失函数为:当M非常大(样本总数很大)时,我们通常可
原创
发布博客 2021.03.02 ·
580 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

推荐好文

Emotion-based Movie Recommender Systemhttp://www.ptidej.net/courses/ift6251/fall06/article/Projet%20Ai%20-%20Ilusca%20-%20Yousra.doc.pdf情感检测,协同过滤,基于内容的过滤,推荐系统。在本文中,介绍了一个基于情感的电影推荐系统(E-MRS)正是为了解决这一问题。EMRS的目标是结合协同过滤和基于内容的技术,为用户提供适应性和个性化的建议。该建议是基于用户的情绪和偏好的推
原创
发布博客 2021.01.04 ·
264 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

迁移学习Transfer learning

旨在从一个任务上学到的特征能在新的,相似的任务上泛化。多用于少样本问题。步骤从先前训练过的模型中获取网络层固定这些网络层的参数,以免在以后的训练中被破坏在被fixed的网络的顶部添加一些新的可训练层在新的数据集上训练新的网路层(可选)以小的学习率在新的数据集上更新全量网路达到fine-tuning。在这一步前,一定要确保新的网络层在新数据上收敛。否则,大gradient会将底层预先训练好的网络破坏。还有一种方法是利用预先训练好的网络作为特征抽取,将输出作为新模型的输入。好处在于您只对新数
原创
发布博客 2020.11.17 ·
148 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

slide-4 Files Management

文件的定义:常规文件 Regular file : text etc可执行文件 Executable file : binary file , shell script设备文件 Device file : /dev/目录 Directories : file container and subdirectory文件属性
原创
发布博客 2020.09.23 ·
135 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

slide-03 File System

File System具体分为 file; directoryFile : data containerDirectory : files container重要的路径/opt/ install new application/usr/bin/ basic linux system command, file manipulation, all accessible/usr/sbin/ system administration commands. Use for root. /usr/lib
原创
发布博客 2020.09.23 ·
148 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Linux-slide2

root$ 常规用户的shell提示符#root 用户的shell提示符,警示操作人员小心开车idid Display your user and group identifications举例$iduid=500(cll2020) gid=500(speech) groups=500(speech),501(image),502(research)‘gid’ 是首要组. 其他组在‘groups‘列出计算机识别的所有用户标识都存储在文件/etc/passwd中,而所有组标识存储在文件/et
原创
发布博客 2020.09.23 ·
135 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

GAN-abc

IntroA counterfeit-police game between two components: a generator G and a discriminator D最终目标是假币制造和真币还要真,警察分辨不出来用数学表达:GAN:本质是 min-max 的对抗模型最左边是生成器的输入(随机噪声),因为目前大部分的工作的G、D用的是神经网络,所以此图用神经网络模型代表。损失函数:前一项尽可能提高判别器对真实数据的判别;后一项尽可能降低判别器对生产数据的判别(因为又1-D,所
原创
发布博客 2020.07.13 ·
201 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

MeLU源码解读

github地址:https://github.com/hoyeoplee/MeLU综述以用户为单位封装support_set & query_set方便训练引入MAML的思想,将参数更新分为分任务更新和元更新。代码实现上应用OrderedDict()辅助分任务更新提出一种筛选新设备的商品推荐策略,item_score = popularity_value * discriminative_valuedata_generation.pydef item_converting ()
原创
发布博客 2020.06.09 ·
2045 阅读 ·
4 点赞 ·
4 评论 ·
5 收藏

metalearning源码之Sine-Wave-Regression

在Sine-Wave-Regression问题上复现了MAML & Reptilemeta learningK-shot learning这种方法与转移学习非常相似,在转移学习中,先在ImageNet上训练了一个网络后对该网络进行微调可以轻松地学习具有更少数据的另一个图像数据集。但二者区别在于,meta learning的训练目标是易于泛化,而迁移学习只是“偶然地”发生了作用,因此可能无法达到最佳效果。确实,找到一个其中转移学习未能学习良好初始化的方法相当容易。 为此,我们需要研究一维正弦
原创
发布博客 2020.06.08 ·
560 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

MetaSelector: Meta-Learning for Recommendation with User-Level Adaptive Model Selection 走读

摘要推荐系统经常面对包含高度个性化的用户历史数据的异构数据集,在这些数据集中,没有哪个模型可以为每个用户提供最佳建议。我们在公共和私有数据集上都观察到了这种普遍存在的现象,并在追求优化每个用户的推荐质量的过程中解决了模型选择问题。我们提出了一个元学习框架,以促进推荐系统中对用户类型的自适应模型选择。在此框架中,将使用来自所有用户的数据来训练推荐系统集合,然后通过元学习对模型选择器进行训练,以使用用户特定的历史数据为每个用户选择最佳的单个模型。我们在两个公共数据集和一个真实世界的生产数据集上进行了广泛的实验
原创
发布博客 2020.06.05 ·
728 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏
加载更多