对角化求可逆矩阵_对角化及其应用

本文详细探讨了矩阵对角化的概念,包括特征值、特征向量及其线性独立性的证明。阐述了矩阵可对角化的判断条件,如特征向量的线性无关性。此外,通过多个实例展示了对角化在求解线性方程组、矩阵运算以及斐波那契数列问题中的应用。
摘要由CSDN通过智能技术生成

一、对角化及其证明(特征值和特征向量)

若矩阵A有n个相互独立的特征向量,n个相互独立的特征向量组成的矩阵S,且由对应的特征值

组成的特征值的对角矩阵
,则有

证明:

若n个特征向量相互独立,则S可逆。则有

在之前的学习中,我们通过消元知道了矩阵A=LU分解;通过Gram-Schmidt正交化,知道了矩阵A=QR分解。

现在我们通过矩阵的特征向量和特征值,知道了

对角化分解。

二、对角化的判断条件

​ 结论1:一个矩阵A可对角化的条件:矩阵A的特征向量必定是线性无关的(因为特征向量组成的矩阵S必定是可逆矩阵)

​ 结论2: 一个矩阵的所有特征值不相等(

),则必定有n个线性无关的特征向量(
)。

证明:有2维矩阵A,有两个不相同的特征值

,两个特征向量

假设

,与矩阵A相乘,则有
,得
式(1)

​ 与

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值