MIT 线性代数 Linear Algebra 25: 对称矩阵的特征值特征向量,正定矩阵

对称矩阵的特征值和特征向量

这一节,我们首先研究一类重要的矩阵,实对称矩阵,的特征值和特征向量。

性质

我们的主要结论是

  • 实对称矩阵的特征值全部是实数。
  • 实对称矩阵可以取到 n n n 个正交的特征实向量。

原因

为什么所有实对称矩阵的特征值全部是实数尼?我们只用对比
A x = λ x      ( 1 ) \bm{Ax}=\lambda\bm{x}~~~~(1) Ax=λx    (1)

A x ‾ = λ ‾ x ‾      ( 2 ) \bm{A\overline{x}}=\overline{\lambda}\overline{\bm{x}}~~~~(2) Ax=λx    (2)

即可,其中下式是上式两边共轭的结果。其实从这里也能看出,任意实矩阵 A \bm{A} A, 如果 λ \lambda λ 是其特征值,则 λ ‾ \overline{\lambda} λ 也是它的特征值,他们的特征向量互为共轭

我们还知道 A = A ⊤ \bm{A}=\bm{A}^\top A=A, 因此由 (2) 有
x ‾ ⊤ A = λ ‾ x ‾ ⊤      ( 3 ) \overline{\bm{x}}^\top\bm{A}=\overline{\lambda}\overline{\bm{x}}^\top~~~~(3) xA=λx    (3)

(1) 左乘 x ‾ ⊤ \overline{\bm{x}}^\top x, (3) 右乘 x \bm{x} x
x ‾ ⊤ A x = λ x ‾ ⊤ x \overline{\bm{x}}^\top\bm{Ax}=\lambda\overline{\bm{x}}^\top\bm{x} xAx=λxx

x ‾ ⊤ A x = λ ‾ x ‾ ⊤ x \overline{\bm{x}}^\top\bm{A}\bm{x}=\overline{\lambda}\overline{\bm{x}}^\top\bm{x} xAx=λxx

Since x ‾ ⊤ x ≠ 0 \overline{\bm{x}}^\top\bm{x}\neq\bm{0} xx=0, 我们有 λ = λ ‾ \lambda=\overline{\lambda} λ=λ, 即 λ \lambda λ 是实数。

复数矩阵 A \bm{A} A: 从上面的推导也可以看出,我们其实是在比较 (1) 和 (1) 的共轭转置。 此时,如果 A \bm{A} A 是复数矩阵,我们有
x ‾ ⊤ A x = λ x ‾ ⊤ x \overline{\bm{x}}^\top\bm{Ax}=\lambda\overline{\bm{x}}^\top\bm{x} xAx=λxx

x ‾ ⊤ A ‾ ⊤ x = λ ‾ x ‾ ⊤ x \overline{\bm{x}}^\top\overline{\bm{A}}^\top\bm{x}=\overline{\lambda}\overline{\bm{x}}^\top\bm{x} xAx=λxx

所以,如果复矩阵是厄米矩阵 (Hermitian) A = A ‾ ⊤ \bm{A}=\overline{\bm{A}}^\top A=A,那它的特征值也全是实数,其中通常我们记作 A ‾ ⊤ = A H \overline{\bm{A}}^\top=\bm{A}^H A=AH.

应用

给定上面两点性质,一个重要的结论是所有的实对称矩阵都能被相似对角化
A = Q Λ Q − 1 = Q Λ Q ⊤ \bm{A=Q}\Lambda\bm{Q}^{-1}=\bm{Q}\Lambda\bm{Q}^\top A=QΛQ1=QΛQ

特别的,对角化所用矩阵是正交矩阵 Q \bm{Q} Q。这有什么好处尼?好处是我们可以把矩阵 A \bm{A} A 直接表示为它的特征值和特征向量:
A = λ 1 q 1 q 1 ⊤ + λ 2 q 2 q 2 ⊤ + . . . + λ n q n q n ⊤ \bm{A}=\lambda_1\bm{q}_1\bm{q}_1^\top+\lambda_2\bm{q}_2\bm{q}_2^\top+...+\lambda_n\bm{q}_n\bm{q}_n^\top A=λ1q1q1+λ2q2q2+...+λnqnqn

其中每一项 q i q i ⊤ \bm{q}_i\bm{q}_i^\top qiqi 都是一个projection matrix (可以代入性质,对称,幂次方是本身)。每一个对称矩阵都能表示为 n n n 个相互正交的投影矩阵的线性组合

Fact 1: 如果没有 row exchange, 实对称的 pivots乘积等于矩阵的行列式,因此也等于所有特征值的乘积。

Fact 2: 对于实对称矩阵,列出所有的 pivots 和所有的特征值,positive的个数和negative的个数相等。

这一点的用处是,

  1. 我们可以估计特征值的正负,这在differential equations中很有用,因为它决定了系统最终会不会收敛。
  2. 我们可以用 pivots 来估计大于某个数, 比如 d d d, 的特征值的个数 (pivots比特征值好算太多太多)。做法就是看矩阵 A − d I \bm{A-dI} AdI pivots 有多少个正数,因为特征值被平移了 d d d.

正定矩阵 positive definite matrix

对称矩阵是一类很好的矩阵,在这个基础上,我们介绍另一类矩阵:正定矩阵。这里我们只介绍一下概念,稍后我们会仔细看这一类矩阵。

前提:实对称矩阵。

要求:所有特征值大于零。

特性:

  1. 所有特征值大于零。
  2. 所有 pivots 大于零。
  3. 所有 n n n 个 子行列式大于零。
  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值