对称矩阵的特征值和特征向量
这一节,我们首先研究一类重要的矩阵,实对称矩阵,的特征值和特征向量。
性质
我们的主要结论是
- 实对称矩阵的特征值全部是实数。
- 实对称矩阵可以取到 n n n 个正交的特征实向量。
原因
为什么所有实对称矩阵的特征值全部是实数尼?我们只用对比
A x = λ x ( 1 ) \bm{Ax}=\lambda\bm{x}~~~~(1) Ax=λx (1)
A x ‾ = λ ‾ x ‾ ( 2 ) \bm{A\overline{x}}=\overline{\lambda}\overline{\bm{x}}~~~~(2) Ax=λx (2)
即可,其中下式是上式两边共轭的结果。其实从这里也能看出,任意实矩阵 A \bm{A} A, 如果 λ \lambda λ 是其特征值,则 λ ‾ \overline{\lambda} λ 也是它的特征值,他们的特征向量互为共轭。
我们还知道 A = A ⊤ \bm{A}=\bm{A}^\top A=A⊤, 因此由 (2) 有
x ‾ ⊤ A = λ ‾ x ‾ ⊤ ( 3 ) \overline{\bm{x}}^\top\bm{A}=\overline{\lambda}\overline{\bm{x}}^\top~~~~(3) x⊤A=λ