MIT 线性代数 Linear Algebra 25: 对称矩阵的特征值特征向量,正定矩阵

对称矩阵的特征值和特征向量

这一节,我们首先研究一类重要的矩阵,实对称矩阵,的特征值和特征向量。

性质

我们的主要结论是

  • 实对称矩阵的特征值全部是实数。
  • 实对称矩阵可以取到 n n n 个正交的特征实向量。

原因

为什么所有实对称矩阵的特征值全部是实数尼?我们只用对比
A x = λ x      ( 1 ) \bm{Ax}=\lambda\bm{x}~~~~(1) Ax=λx    (1)

A x ‾ = λ ‾ x ‾      ( 2 ) \bm{A\overline{x}}=\overline{\lambda}\overline{\bm{x}}~~~~(2) Ax=λx    (2)

即可,其中下式是上式两边共轭的结果。其实从这里也能看出,任意实矩阵 A \bm{A} A, 如果 λ \lambda λ 是其特征值,则 λ ‾ \overline{\lambda} λ 也是它的特征值,他们的特征向量互为共轭

我们还知道 A = A ⊤ \bm{A}=\bm{A}^\top A=A, 因此由 (2) 有
x ‾ ⊤ A = λ ‾ x ‾ ⊤      ( 3 ) \overline{\bm{x}}^\top\bm{A}=\overline{\lambda}\overline{\bm{x}}^\top~~~~(3) xA=λ

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值