python数据分析与可视化

python数据分析与可视化

1. 数据准备

  • 数据加载:从文件、数据库、API 中导入数据。
  • 数据清理:处理缺失值、重复数据、异常值,转换数据类型等。

2. 数据分析基础

数据分析的基本步骤包括数据收集、数据清理、数据探索、数据建模和数据可视化。Python 的强大生态系统支持每一个步骤。

1.1 数据收集

数据可以通过多种方式收集,如 CSV 文件、数据库、API 或爬虫等。

  • 读取 CSV 文件:
import pandas as pd
# 读取 CSV 文件
df = pd.read_csv('data.csv')
  • 从数据库读取数据:
import sqlite3
# 连接到 SQLite 数据库
conn = sqlite3.connect('database.db')
df = pd.read_sql_query("SELECT * FROM table_name", conn)

1.2 数据清理

数据清理是数据分析中至关重要的步骤。常见的清理操作包括处理缺失值、重复值、数据类型转换和数据格式化等。

  • 处理缺失值:
# 删除缺失值
df.dropna(inplace=True)

# 用均值填充缺失值
df.fillna(df.mean(), inplace=True)
  • 删除重复值:
df.drop_duplicates(inplace=True)

1.3 数据探索

数据探索用于了解数据的分布和特征。可以使用统计描述、分组和可视化等方法进行探索。

  • 统计描述:
print(df.describe())  # 显示基本统计信息
  • 分组:
grouped = df.groupby('category').sum()

3. 数据可视化

  • 基础可视化:通过折线图、散点图、直方图等观察数据的分布和关系。
  • 高级可视化:包括交互式可视化、分面图、多变量图等,进一步挖掘数据背后的复杂模式。

4. 模型构建与评估(如需)

  • 机器学习模型:使用回归、分类或聚类模型,对数据进行预测、分类或分群。
  • 模型评估:通过交叉验证、混淆矩阵、ROC 曲线等评价模型性能。
    详细步骤和代码示例:

Step 1: 数据准备

1.1 导入必要的库
import pandas as pd  # 数据处理
import numpy as np   # 数值计算
import matplotlib.pyplot as plt  # 基础绘图
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

笑非不退

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值