import xgboost
from xgboost import XGBClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.externals import joblib
import numpy as np
class XGBOOST():
def __init__(self,model_path):
# 加载模型
self.model = joblib.load(model_path)
def train():
# 载入数据集
dataset = np.load("model/train_data.npy")
dataset[:,10]
Python使用XGBoost
最新推荐文章于 2025-10-14 20:04:52 发布
本文详细介绍了如何在Python中利用XGBoost进行数据建模,包括安装库、数据预处理、模型训练、参数调优和模型评估等关键步骤,助你深入理解并掌握这一强大的机器学习库。

最低0.47元/天 解锁文章
2万+

被折叠的 条评论
为什么被折叠?



