gpu显示off_小白之GPU简介

本文介绍了GPU的发展历程,从Tesla到Turing架构的演进,强调了架构对性能的影响。同时,讨论了GPU的芯片型号、显卡系列、流处理器数量对性能的重要性,以及在深度学习中的应用,特别是GPU云主机在计算效率上的优势。还提到了显卡的其他关键特性,如风扇转速、显存使用率和GPU利用率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

6b7f4f75c961dfe8631a9604caec7db0.png

GPU

之前看到一个用画师的比喻感觉蛮好的。

  • GPU架构 一般来说越新性能越好,架构越好水平越好,类比画师的水平。
  • 流处理器 渲染管,流处理器数量越多,显卡画图的能力越强,速度也越快。一般是同型号比较流处理器个数。类比画师的个数。
  • 核心频率 频率越高,效率越高,功耗也越大,画师工厂的运画到仓库的搬运人员其运输的速率。
  • 容量 提供临时的存储功能,当然要配合带宽等,不然大了也浪费。类比画师工厂仓库。
  • 显存带宽 显存位宽×显存频率,显存位宽类比成公路,公路越宽,一次能通过的车辆越多;显存频率类别汽车速度,频率越快,数据传输就越快。

1.首先来看看NVIDIA GPU架构。架构指的是硬件的设计方式,例如core数量、L1 or L2缓存、计算单元双精度还是单精度等等。

cba3aead06968a4baa5afdd4da8d3d9c.png
  • 2008 - Tesla

​ Tesla最初是给计算处理单元使用的,应用于早期的CUDA系列显卡芯片中,并不是真正意义上的普通图形处理芯片。

  • 2010 - Fermi

Fermi是第一个完整的GPU计算架构。首款可支持与共享存储结合纯cache层次的GPU架构,支持ECC的GPU架构。

  • 2012 - Kepler

Kepler相较于Fermi更快,效率更高,性能更好。

  • 2014 - Maxwell

其全新的立体像素全局光照 (VXGI) 技术首次让游戏 GPU 能够提供实时的动态全局光照效果。基于 Maxwell 架构的 GTX 980 和 970 GPU 采用了包括多帧采样抗锯齿 (MFAA)、动态超级分辨率 (DSR)、VR Direct 以及超节能设计在内的一系列新技术。

  • 2016 - Pascal

Pascal 架构将处理器和数据集成在同一个程序包内,以实现更高的计算效率。1080系列、1060系列基于Pascal架构

  • 2017 - Volta

Volta 配备640 个Tensor 核心,每秒可提供超过100 兆次浮点运算(TFLOPS) 的深度学习效能,比前一代的Pascal 架构快5 倍以上。

  • 2018 - Turing

Turing 架构配备了名为 RT Core 的专用光线追踪处理器,能够以高达每秒 10 Giga Rays 的速度对光线和声音在 3D 环境中的传播进行加速计算。Turing 架构将实时光线追踪运算加速至上一代 NVIDIA Pascal™ 架构的 25 倍,并能以高出 CPU 30 多倍的速度进行电影效果的最终帧渲染。2060系列、2080系列显卡也是跳过了Volta直接选择了Turing架构。

2.芯片型号

芯片型号:GT200、GK210、GM104、GF104等。其中第二个字母表示架构,如K40 中的K表示是Kepler架构

3.显卡系列

分成GeForce, Quadro, Tesla。 GeForce消费级常用于游戏等,如GeForce RTX 2080ti、GeForce GTX 1080ti,还有显卡型号有Titan v, Titan RTX, Titan Xp; Quadro用于专业图形领域,如Quadro RTX 8000; Tesla用于科学计算,深度学习加速等场景,如Tesla P4/P40, Tesla T4。

4.流处理器

流处理器也叫渲染管,越多处理越快。

9fa92628b69d78e040600c8d9ca6b83b.png

5.深度学习gpu云主机

  • 型号中大写表示架构,例如K表示是Kepler架构
  • CUDA Cores 流处理器个数
  • 显存容量 存储,例如深度学习中参数
  • 浮点性能 通常关心的是32位浮点计算能力。16位浮点训练也开始流行,如果只做预测的话也可以用8位整数。FLOPS,即每秒浮点运算次数。

一个TFLOPS(teraFLOPS)= 每秒万亿(=10^12)次的浮点运算

(百度深度学习开发板应该是TITAN X (Pascal))

12356ffc84ece5f19e46a469cd093f66.png

6.其他

1.公版显卡 显卡研发厂家NVDIA(英伟达)或AMD官方售卖的显卡;非公版显卡购买NVDIA,AMD显卡芯片后自行组装生产的显卡,通常比公版显卡性能更高。

2.N卡 NVIDIA生产 A卡ADM

3.linux命令

watch -n 1 nvidia-smi

+-----------------------------------------------------------------------------+
| NVIDIA-SMI 418.67       Driver Version: 418.67       CUDA Version: 10.1     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  TITAN X (Pascal)    On   | 00000000:00:09.0 Off |                  N/A |
| 23%   26C    P8     8W / 250W |      1MiB / 12196MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+

Fan(23%)N/A是风扇转速,从0到100%之间变动。有的设备不会返回转速因为依赖外界降温比如在空调房的gpu;

Name:名称;

Temp:显卡内部的温度,单位是摄氏度;

Perf:表征性能状态,从P0到P12,P0表示最大性能,P12表示状态最小性能;

Persistence-M:持续模式的状态(持续模式耗能大,但在新的GPU应用启动时花费时间更少);

Pwr:Usage/Cap:GPU能耗;

Bus-Id:GPU总线;

Disp.A:Display Active,表示GPU的显示是否初始化;

Memory-Usage:显存使用率; 12196MiB表示显存大小是12G

Volatile GPU-Util:GPU利用率

Uncorr. ECC:是否开启错误检查和纠正技术,0/DISABLED, 1/ENABLED

Compute M.:计算模式,0/DEFAULT,1/EXCLUSIVE_PROCESS,2/PROHIBITED

Processes:进程信息 pid占用显存大小等等

显卡天梯图

01938807c018f1db5ca04667ecccd9cc.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值