在学习了朴素贝叶斯的概念后,下来我们来看看它的java实现。
主要思路:利用google的Newsgroup18828文本分类器,使用多项式朴素贝叶斯文本分类算法进行文本自动分类。同时也实行了KNN算法进行文本分类。 DataPreProcess:利用stem算法进行文本预处理。过滤掉特殊字符。
该程序在代码中大量使用文件的绝对路径,下载下来使用,很不方便。我修改了其源码。在使用时只要设定程序主目录,将20news-18828.tar.gz包解压缩至设定程序主目录/orginSample的目录下。并修改了一点程序bug。将stopwords.txt放入到设定程序主目录下。
public class ClassifierMain {
public static final String DEFALUT_DIR="e:"+"/"+
"recommend"+"/";
public static final String DATA_PRE_PROCESS_DIR=DEFALUT_DIR+"orginSample"+"/";
public static void main(String[] args) throws Exception {
// TODO Auto-generated method stub
DataPreProcess DataPP = new DataPreProcess();
NaiveBayesianClassifier nbClassifier = new NaiveBayesianClassifier();
KNNClassifier knnClassifier = new KNNClassifier();
DataPP.BPPMain(args);
nbClassifier.NaiveBayesianClassifierMain(args);
knnClassifier.KNNClassifierMain(args);
}
}
例如:我的程序主目录为e:/recommend 在其目录下新建orginSample目录,把20news-18828.tar.gz解压缩至该目录下。