java贝叶斯文本分类算法_朴素贝叶斯文本分类算法java实现

在学习了朴素贝叶斯的概念后,下来我们来看看它的java实现。

主要思路:利用google的Newsgroup18828文本分类器,使用多项式朴素贝叶斯文本分类算法进行文本自动分类。同时也实行了KNN算法进行文本分类。 DataPreProcess:利用stem算法进行文本预处理。过滤掉特殊字符。

该程序在代码中大量使用文件的绝对路径,下载下来使用,很不方便。我修改了其源码。在使用时只要设定程序主目录,将20news-18828.tar.gz包解压缩至设定程序主目录/orginSample的目录下。并修改了一点程序bug。将stopwords.txt放入到设定程序主目录下。

public class ClassifierMain {

public static final String DEFALUT_DIR="e:"+"/"+

"recommend"+"/";

public static final String DATA_PRE_PROCESS_DIR=DEFALUT_DIR+"orginSample"+"/";

public static void main(String[] args) throws Exception {

// TODO Auto-generated method stub

DataPreProcess DataPP = new DataPreProcess();

NaiveBayesianClassifier nbClassifier = new NaiveBayesianClassifier();

KNNClassifier knnClassifier = new KNNClassifier();

DataPP.BPPMain(args);

nbClassifier.NaiveBayesianClassifierMain(args);

knnClassifier.KNNClassifierMain(args);

}

}

例如:我的程序主目录为e:/recommend 在其目录下新建orginSample目录,把20news-18828.tar.gz解压缩至该目录下。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值