傅里叶变换的探讨

概述

对傅里叶变换的整理,并通过python对其可视化,直观感受傅里叶变换的图案。
声明,本文只是自己做的笔记,纯手打且才刚接触CSDN,不保证文章准确性,后续会继续补充改进并不断思考,慎看。

傅里叶变换的理论基础

周期函数的傅里叶级数

三角级数

f ( x ) = f ( x + T ) f(x)=f(x+T) f(x)=f(x+T)为周期为 T T T的周期函数,令 w 0 = 2 π / T w_0=2\pi/T w0=2π/T,则 f ( x ) f(x) f(x)有其对应的傅里叶级数
f ( x ) ∼ a 0 2 + ∑ n = 1 ∞ ( a n cos ⁡ n w 0 x + b n sin ⁡ n w 0 x ) a n = 2 T ∫ T f ( x ) cos ⁡ n w 0 x d x   ( n = 0 , 1 , 2 , ⋯   ) b n = 2 T ∫ T f ( x ) sin ⁡ n w 0 x d x   ( n = 1 , 2 , ⋯   ) f(x)\sim \frac{a_0}2+\sum_{n=1}^{\infty} (a_n\cos nw_0x+b_n\sin nw_0x)\\ \\[2mm] a_n=\frac2T \int_T f(x)\cos nw_0xdx \,(n=0,1,2,\cdots)\\ \\[2mm] b_n=\frac2T \int_T f(x)\sin nw_0xdx \,(n=1,2,\cdots) f(x)2a0+n=1(ancosnw0x+bnsinnw0x)an=T2Tf(x)cosnw0xdx(n=0,1,2,)bn=T2Tf(x)sinnw0xdx(n=1,2,)
对应的可视化代码待补充

一些特性
若函数 f ( x ) f(x) f(x)属于奇函数,则其傅里叶级数系数中 a n a_n an都为0
若函数 f ( x ) f(x) f(x)属于偶函数,则其傅里叶级数系数中 b n b_n bn都为0

收敛性证明
迪利克雷收敛定理
证明待补充

三角函数系正交性的探讨
由于三角函数系的正交性,可以作为空间内的一组基底,表示任意函数?

三角函数系 1 , sin ⁡ x , cos ⁡ x , sin ⁡ 2 x , cos ⁡ 2 x , ⋯   , sin ⁡ n x , cos ⁡ n x , ⋯ 1,\sin x,\cos x,\sin 2x,\cos 2x,\cdots,\sin nx,\cos nx,\cdots 1,sinx,cosx,sin2x,cos2x,,sinnx,cosnx,其中任意两个函数之积在 [ − π , π ] [-\pi,\pi] [π,π]上的积分为零。
正交性的证明略

这种条件正交与通常意义上的正交是否存在差异,三角函数系的正交是在一个周期内的,而普遍意义上的正交是在 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)上的。而三角函数系在 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)上,两函数之积的积分不存在极限。
是否可以参考平面波的箱归一化
对于完备基底的思考
正交 ≠ \neq =完备

关于完备的探讨

复数形式

通过欧拉公式 e i x = cos ⁡ x + i sin ⁡ x e^{ix}=\cos x+i\sin x eix=cosx+isinx,可以将三角级数变换为复数形式,较为简洁。
cos ⁡ n w 0 x = 1 2 ( e i n w 0 x + e − i n w 0 x ) sin ⁡ n w 0 x = − i 2 ( e i n w 0 x − e − i n w 0 x ) \cos nw_0x=\frac 12(e^{inw_0x}+e^{-inw_0x})\\[2mm] \sin nw_0x=-\frac i2(e^{inw_0x}-e^{-inw_0x}) cosnw0x=21(einw0x+einw0x)sinnw0x=2i(einw0xeinw0x)
代入三角级数中变成
f ( x ) = a 0 2 + ∑ n = 1 ∞ ( a n 1 2 ( e i n w 0 x + e − i n w 0 x ) − b n i 2 ( e i n w 0 x − e − i n w 0 x ) ) = a 0 2 + ∑ n = 1 ∞ ( a n − i b n 2 e i n w 0 x + a n + i b n 2 e − i n w 0 x ) = ∑ n = − ∞ ∞ c n e i n w 0 x c n = a n − i b n 2   , c 0 = a 0 2   , c − n = a n + i b n 2   ( n = 1 , 2 , ⋯   ) f(x)= \frac{a_0}2+\sum_{n=1}^{\infty} (a_n\frac12(e^{inw_0x}+e^{-inw_0x})-b_n\frac i2(e^{inw_0x}-e^{-inw_0x}))\\ \\[2mm] =\frac{a_0}2+\sum_{n=1}^{\infty} (\frac{a_n-ib_n}2e^{inw_0x}+\frac{a_n+ib_n}2e^{-inw_0x})\\ \\[2mm] =\sum_{n=-\infty}^{\infty} c_ne^{inw_0x}\\ \\[2mm] c_n=\frac{a_n-ib_n}2 \ , c_0=\frac{a_0}2 \ , c_{-n}=\frac{a_n+ib_n}2 \ (n=1,2,\cdots) f(x)=2a0+n=1(an21(einw0x+einw0x)bn2i(einw0xeinw0x))=2a0+n=1(2anibneinw0x+2an+ibneinw0x)=n=cneinw0xcn=2anibn ,c0=2a0 ,cn=2an+ibn (n=1,2,)
一番操作大概可以变成下面这样,下面公式中的 j j j为复数 i i i
x ( t ) = ∑ k = − ∞ + ∞ a k e j k w 0 t a k = 1 T ∫ T x ( t ) e − j k w 0 t d t x(t)=\sum_{k=-\infty}^{+\infty} a_k e^{jkw_0t}\\ a_k=\frac1T \int_T x(t)e^{-jkw_0t}dt x(t)=k=+akejkw0tak=T1Tx(t)ejkw0tdt

举一些例子,对比 a n , b n a_n,b_n an,bn c n c_n cn的关系,对比三角与复指数的关联,对应关系

  • 待补充
    n n n从之前的 ( 0 , + ∞ ) (0,+\infty) (0,+)变成了 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+),系数从实数变成了复数,项是否仍然相等?
    系数是否遍布整个复空间?分布情况如何?系数是谁的函数?一个 w w w对应一个系数,系数属于复数域,系数只包含实数时则只需要实数频谱,对应复数时有膜和相位两个函数、或者实数和复数两个函数
    一个 a n b n a_n b_n anbn对应两个 c n c_n cn,所以系数总数应该是不变的
    复数系数、负 n n n分别对应原式中的哪些项?

非周期函数的傅里叶变换

x ( t ) = 1 2 π ∫ − ∞ + ∞ X ( j w ) e j w t d w X ( j w ) = ∫ − ∞ + ∞ x ( t ) e − j w t d t x(t)=\frac1{2\pi}\int_{-\infty}^{+\infty} X(jw) e^{jwt}dw\\ X(jw)=\int_{-\infty}^{+\infty} x(t)e^{-jwt}dt x(t)=2π1+X(jw)ejwtdwX(jw)=+x(t)ejwtdt
X ( j w ) X(jw) X(jw) X ( w ) X(w) X(w)有什么区别?与卷积的联系
对应的三角函数积分形式

二维傅里叶分析
F ( u , v ) = ∫ − ∞ + ∞ ∫ − ∞ + ∞ f ( x , y ) e − j 2 π ( u x + v y ) d x d y F(u,v) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) e^{-j 2 \pi(u x+v y)} d x d y\\ \\[2mm] F(u,v)=++f(x,y)ej2π(ux+vy)dxdy
多元函数的傅里叶级数
二维傅里叶变换是怎么进行的

二维傅里叶在图像分析中的应用
三维傅里叶分析

三维傅里叶分析在倒空间中的应用

  • 待补充

收敛性证明
复指数集属于完备集?属于复数域?

复数函数也对应傅里叶变换,

傅里叶分析在信号与系统内的独特应用

待补充

常见傅里叶变换对

周期脉冲函数的傅里叶变换还是周期脉冲,周期为 2 π / T 2\pi/T 2π/T
方波
锯齿波
周期脉冲乘方波
两个函数相乘的傅里叶变换结果为两个函数傅里叶变换的卷积?

提出的一些问题

1、为什么傅里叶变换中复数函数积分后变成实数函数了?
例如 δ ( x ) = 1 2 π ∫ − ∞ + ∞ e i k x d k \delta(x)=\frac1{2\pi}\int_{-\infty}^{+\infty}e^{ikx}dk δ(x)=2π1+eikxdk?
答: δ \delta δ函数可能是一个比较特殊的函数,还有待探讨。而对于其他函数,傅里叶系数可能是复数,

可视化

用三角函数获得周期函数

import numpy as np                    #导入扩展库numpy(数组、函数等)
import matplotlib.pyplot as plt       #导入扩展库matplotlib(数据可视化、作图工具等)

#绘制函数图形
x = np.linspace(-40,40,1000)
y = 0
for i in range(1,1600):
    y+=np.sin(i*x)+np.cos(i*x)
plt.plot(x,y,color = 'red',linewidth = 2)

plt.show()   

注意plot给的点的精度,类似于采样率,如果太低了会无法观察到细节。比如画 δ \delta δ函数时如果显示精度大于峰的宽度,则可能看不见主峰而只有噪声。
从周期函数分析得到频谱

待补充

多元傅里叶变换?
参考 https://zhuanlan.zhihu.com/p/345957045
https://wuli.wiki/changed/NFTran.html

欢迎批评与指正
联系方式:941083700@qq.com
转载请注明本文

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值