量子力学的困惑

学了一段时间高量后,忠告:别自学,找懂的老师提出你的疑问,有些老师可能其实自己都没搞明白,看sakurai的书,多对比几本书看,别全看中国人写的书!!!


以下为本人自学量子力学时的奇思妙想,大部分来自于对量子力学概念的不清晰,本人目前也仍然在学习量子力学,并找到了良师益友。本来这是自己的笔记,准备解决了所有困惑后再发表,但目前可能没有精力去整理这些困惑的答案了。希望网友们能帮助我解答部分困惑,也希望某些提问能给出独特的启发,可能大部分困惑都来自于基础概念的不清晰,请多多批评。
忠告:多于他人交流,找到自己的良师益友。

不要道听途说,不要轻信网上的东西,多看书多看书多看书!!!

暂定

关于表象变换

具体问题:氢原子的能量本征态与谐振子的能量本征态能否相互表示?

一组力学量完全集的本征态构成一个表象。坐标算符是坐标表象,动量算符是动量表象,那么包含H的一组力学量完全集也对应一个表象,这个表象与H有关。那么不同H对应的本征态之间可以相互展开,数学上这是可以做到的,至于物理上(把氢原子本征态变成谐振子本征态的线性组合)有什么意义,先不考虑。

未知:表象变换的理论支撑是什么?怎么从量子力学基本假设来得到表象变换?

氢原子零点能

问题:为什么氢原子具有零点能?
氢原子零点能用不确定关系很好理解,可是体系的解是通过薛定谔方程得到的,薛定谔方程怎么知道这个不确定关系?
可能的解释是,束缚态的边界条件导致了零点能

量子力学

定态与含时

已知:一个含时薛定谔方程 i ℏ ∂ ∂ t ∣ ψ ( t ) ⟩ = H ∣ ψ ( t ) ⟩ i\hbar \frac{\partial}{\partial t}|\psi(t)\rangle=H|\psi(t)\rangle itψ(t)=Hψ(t)对应一个特定系统,其解为 ∣ ψ ( t ) ⟩ |\psi(t)\rangle ψ(t)
如果体系的哈密顿量不显含时间 t t t,则方程的解形式上可表示为 ∣ ψ ( t ) ⟩ = U ( t ) ∣ ψ ( 0 ) ⟩ = e − i H t / ℏ ∣ ψ ( 0 ) ⟩ |\psi(t)\rangle=U(t)|\psi(0)\rangle=\mathrm{e}^{-i H t / \hbar}|\psi(0)\rangle ψ(t)=U(t)ψ(0)=eiHt/ψ(0),其中U为算符。
对于定态薛定谔方程 H ∣ ϕ ⟩ = E ∣ ϕ ⟩ H|\phi\rangle=E|\phi\rangle Hϕ=Eϕ,解得一组正交归一的 ϕ \phi ϕ E E E ϕ \phi ϕ构成完备的基底, ψ ( 0 ) \psi(0) ψ(0)可对 ϕ \phi ϕ展开。
(曾书11.1.1)

任意波函数可对一组完备基底进行展开,但是线性组合后得到的仍然是不含时波函数,待求波函与基底对应的哈密顿量H又不一样,不能直接乘一个算符U得到含时波函数。但是其实对不含时哈密顿量的解,得到不含时解就已经足够了,对于含时哈密顿量的解,可以把任意时刻t的解对基底展开,得到基底展开系数对t的变化,解即为含时解。

也许哈密顿量H不含时间的时候,只求得定态解与其线性组合就得到了体系的所有解的一个映射?

(什么空间下的?该完备基底的线性组合不一定是定态薛定谔方程的解?可以对应含时薛定谔方程的解,需要每一项都乘含时项)
(分离变量这一步适用于任意解?特解?与微积分中的特解的关联?)
非定态的能量平均值不改变?

困惑:为什么后面很多地方都进行本征波函数的叠加,看看后续的应用。(本征波函数是不是含时波函数在 t = 0 t=0 t=0时的波函数?)
定态波函数的线性组合是不是对应含时波函线性组合后,在t=0时的波函数?

目前接触较多的都是定态薛定谔方程、波函数、能量等。
含时薛定谔方程是雄性方程,所以其解的雄性叠加也满足方程,这就是态叠加原理。
哈密顿量不含时间时,可分离变量,得到定态薛定谔方程,所解为定态波函数。非简并情况下正交归一化后是唯一的?
定态波函数的线性组合不一定满足定态薛定谔方程?
完备意味着任意该空间内解可以表示为基底的线性组合,但线性组合不一定为解?而且除了这组定态解外,其他解都是无法分离变量的,那也就意味着线性组合系数含时?

以上所有讨论都在不含时哈密顿量H描述的体系中

表象变换与矩阵表示

力学量完全集的共同本征态可以作为一个表象的一组完备集
本征态不含时,含时波函数(哈密顿量不含时)能否对其展开,含时波函数(哈密顿量含时)情况下呢,该完备集张成的空间在数学上如何严格定义,
波函数的向量表示

无限刷势阱的本征态是一组完备集吗,其解空间是全空间吗?
连续谱和分立谱之间呢?

算符的向量表示

波函数的基底变换
算符的基底变换
曾书里面就没有看见什么基底变换

表象变换

有哪些表象?坐标表象、动量表象、能量表象、相干态表象
这些表象的本征态有哪些?
动量、坐标算符在动量、坐标表象的表示?为什么?
不同表象的薛定谔方程

算符的坐标表象是量子力学基本假设?

F表象是在F完全集的本征态下的表示?
动量本征态是什么?坐标本征态是什么?H与p对易吗
能量本征方程有很多种不同的形式,为什么动量本征方程只有一种形式?解也只有平面波形式的解?
不同体系的表象不同吗?比如动量表象,本征态在不同体系下可能一、三维、连续谱、离散谱……?

动量本征态与坐标本征态对应的希尔伯特空间是否一样?

问题
H对角化意味着什么?
幺正变换,厄密算符是啥?对应线性代数里面的啥

量子力学的矩阵表示

Dirac符号

守恒量

对力学量平均值对时间微分的讨论(没有说明H是否含时,暂且在H不含时框架下接受)
计算A在任意态下的平均值对时间的微分(下面A为算符):
d d t A ˉ ( t ) = ( ∂ ψ ∂ t , A ψ ) + ( ψ , ∂ ∂ t ( A ψ ) ) = ( ∂ ψ ∂ t , A ψ ) + ( ψ , A ∂ ψ ∂ t ) + ( ψ , ∂ A ∂ t ψ ) \frac d{dt} \bar{A}(t)=\left(\frac{\partial \psi}{\partial t}, A \psi\right) +\left(\psi, \frac{\partial}{\partial t} (A\psi)\right)\\ =\left(\frac{\partial \psi}{\partial t}, A \psi\right)+\left(\psi, A \frac{\partial \psi}{\partial t}\right)+\left(\psi, \frac{\partial A}{\partial t} \psi\right) dtdAˉ(t)=(tψ,Aψ)+(ψ,t(Aψ))=(tψ,Aψ)+(ψ,Atψ)+(ψ,tAψ)
其中用到了对 A ψ A\psi Aψ的时间微分:
∂ ∂ t ( A ψ ) = A ( ∂ ψ ∂ t ) + ( ∂ A ∂ t ) ψ \frac{\partial}{\partial t} (A\psi)=A \left(\frac{\partial \psi}{\partial t}\right)+ \left(\frac{\partial A}{\partial t}\right) \psi t(Aψ)=A(tψ)+(tA)ψ
对该式子的理解, ∂ ∂ t ( ∂ ∂ x y ( x , t ) ) = ( ∂ ∂ t ∂ ∂ x ) y ( x , t ) + ∂ ∂ x ( ∂ ∂ t y ( x , t ) ) \frac{\partial}{\partial t} (\frac{\partial}{\partial x} y(x,t))=(\frac{\partial}{\partial t} \frac{\partial}{\partial x}) y(x,t) + \frac{\partial}{\partial x} (\frac{\partial}{\partial t} y(x,t)) t(xy(x,t))=(tx)y(x,t)+x(ty(x,t)),其中 ( ∂ ∂ t ∂ ∂ x ) = 0 (\frac{\partial}{\partial t} \frac{\partial}{\partial x})=0 (tx)=0,则 ∂ ∂ t ( ∂ ∂ x y ( x , t ) ) = ∂ ∂ x ( ∂ ∂ t y ( x , t ) ) \frac{\partial}{\partial t} (\frac{\partial}{\partial x} y(x,t))= \frac{\partial}{\partial x} (\frac{\partial}{\partial t} y(x,t)) t(xy(x,t))=x(ty(x,t))意味着微分可交换顺序。而如果把 ∂ ∂ x \frac{\partial}{\partial x} x换成 g ( t ) ∂ ∂ x g(t) \frac{\partial}{\partial x} g(t)x则不能直接交换。
其实直接等于0的是 ( ψ , ∂ A ∂ t ψ ) \left(\psi, \frac{\partial A}{\partial t} \psi\right) (ψ,tAψ),是 ∂ A ∂ t \frac{\partial A}{\partial t} tA算符在任意态里面的平均值。
(算符对时间的偏导为0,算了,先接受下来,看看大结论!!!)
以上给出力学量算符A在任意态下的平均值不随时间变化的条件,A不显含时且与H对易。之后还证明了,这种力学量在任态下的概率分布也不随时间变化。这样的力学量叫做守恒量

能级简并与守恒量的关系

位力(virial)定理,证明过程有待考证(需要量子力学对易关系,需要代入具体表象计算?),关键是结论给出了什么?这个定理说明了什么?(推导过程中令 d d t r p ˙ ˉ = 0 \frac d{dt}\bar{\boldsymbol {r\dot p}}=0 dtdrp˙ˉ=0,条件不太明白,)(哎呀,过过过)

波包与Ehrenfest定理
波包为什么会发散,为什么产生了与经典理论的偏离,群速度、相速度是什么?
(并没有产生偏离,波包的发散是概率的发散,而不是粒子本身的发散。)(什么情况下波包会发散,用自由粒子的波函数叠加起来讨论一下!!!(自由粒子的k与w好像有关联,所以不能保证不同k的波的相速度一致?)(根据E定理研究一下线性势或谐振子势下粒子的运动))

A ˉ \bar{A} Aˉ是算符 A A A在任何体系可能态下的平均值,是对应本征值的平均(本征值出现的概率与本征值的乘积求和)

薛定谔图像 d d t A ˉ ( t ) = 1 i ℏ [ A , H ] ‾ \frac{d}{d t} \bar{A} (t)=\frac{1}{i \hbar}\overline{[A, H]} dtdAˉ(t)=i1[A,H]
海森堡图像 d d t A ( t ) = 1 i ℏ [ A ( t ) , H ] \frac{d}{d t} A(t)=\frac{1}{i \hbar}[A(t), H] dtdA(t)=i1[A(t),H]
困惑,为什么海森堡绘景里面的式子和经典理论如此类似,薛定谔绘景里面怎么推导出 d d t r ( t ) = p m t \frac d {dt} r(t) = \frac p m t dtdr(t)=mpt(薛定谔里面好像只能推个平均值……)

守恒量与对称性
对称性变换算符与守恒量算符 满足的条件是一样的?
但是对称性变换算符只是幺正的,不一定是力学量算符?
一个对称性变换对应的无穷小变换为一个守恒量?怎么从幺正变成厄密的?中间推导存疑(为什么令一个小变化为 1 + i ϵ F 1+i\epsilon F 1+iϵF
变换为什么作用于波函数上,对称性不应该是体系所具有的吗?不应该是作用于哈密顿量量上的吗?(最后导出的体系在变换下不变性的数学形式, Q − 1 H Q = H Q^{-1}HQ=H Q1HQ=H,在线性代数下是什么意思?)
(参考经典体系下的诺拉定理https://zhuanlan.zhihu.com/p/141907230)

时间反演对称性呢?

全同粒子体系与波函数的交换对称性
书中提到的全同粒子似乎都是质子及质子团,那么同时包含质子与电子的原子属于全同粒子吗?
(全同粒子的更多例子,4.5.1的最后有提到)
那么全同粒子系统的解,不是说满足薛定谔方程就可以了,还要满足交换(反)对称性?(这个对称性的限制从哪推导出来的?是从全同粒子体系交换对应同一微观态来的?)

为什么交换对称性与自旋有关?除了电子、其他粒子的自旋代表了什么,自旋代表了磁性吗?

角动量平方算符是一直守恒吗
中心力场中角动量算符守恒,角动量分量算符却不守恒?(什么情况?一个矢量守恒,分量却不守恒,,,)

箱归一化

平面波的归一化问题
把自由粒子局限于有限空间[-L/2,L/2]之间运动(最后在让L趋于无穷)
为了保证动量算符的厄密性,波函数需要满足周期性边界条件。
看看应用的地方!!!

中心力场

薛定谔方程只是个方程,他又不知道什么不确定关系,为什么得不到E=0的解,为什么解都满足不确定关系?为什么氢原子算出来就是存在最低能级?

中心力场中粒子运动必为平面运动,这会通过不确定关系带来什么?(A:平面运动是经典情况下)这时系统处于角动量z分量的本征态上?这时可以通过知道粒子空间概率分布知道角动量的概率分布吗?

中心力场问题通解。含角度部分可直接得出来,径向分布函数满足一个含V®的微分方程。

氢原子中的n、l、m、k对应什么,对应的观测实验是什么,n不是简并的吗,为什么2s与2p还占据顺序还不同
为什么曾书中5.4给出1s 2p 3d是圆轨道,只是命名的顺序差别吗

力学量完全集

力学量完全集的数目一般等于体系的自由度,也可以大于

表象

7.1(10)表象变换是基于态叠加原理?

一个表象是一组对易的力学量完全集的共同本征函数集,比如坐标表象就是对易集 ( x , y , z ) (x,y,z) (x,y,z),动量表象就是对易集 ( p x , P y , p z ) (p_x,P_y,p_z) (px,Py,pz)。(如果想找角动量表象,就要找到包含角动量的对易力学量完全集)

为什么知道 ϕ ( r ) \phi (r) ϕ(r)后可以确定 Φ ( p ) \Phi(p) Φ(p),物理上是因为知道p算符在坐标表象下的本征态(即知道动量为p的粒子的空间分布概率函数),所以任意空间函数可以对p本征态做分解,得到p表象下的分布函数。
那么只要知道其他算符在坐标表象下的本征态,就可以得到坐标表象与该算符表象之间变换的矩阵了。

1.3
知道 ϕ ( r ) \phi (r) ϕ(r)后可以确定 Φ ( p ) \Phi(p) Φ(p),也可以知道其他一切力学量的概率分布函数?
找例子,比如轨道角动量、自旋角动量
是不是两个算符不对易才可以进行表象变换?(哈密顿量是力学量吗?知道空间概率分布可以知道能量分布吗?)(由于矢量之间的对易尚未定义,考虑坐标的分量,知道x的分布函数后,可以知道p的分量的概率分布吗?可以知道角动量l的分量的概率分布吗)(好像不能只知道x的分布函数?不清楚,暂时考虑知道p_x吧,会确定xyz中哪一个的分布函数?)
考察这个说法的推广,其他任意两个表象之间是否可以一一对应(知道A的概率发布函数,是否可以知道B的概率发布函数?A、B之间条件是什么)(表象变换的条件是什么?自旋表象与坐标表象之间可以变化?)

自旋

自旋态与算符
前提:自旋角动量在空间任意方向上的投影只能取两个值,±1/2 ℏ \hbar ;自旋三个分量之间满足的对易关系式;厄密性

自旋态波函数(a b),可以表示z方向的自旋波函数,而x、y方向也可以如此表示
自旋算符,pauli矩阵(pauli表象下)(z方向角动量算符本征态构成的表象)(为什么z算符对应的本征态可以用来作为x、y算符的表象?)
本征态
本征值

总角动量的本征态
从对易守恒量完全集推出本征态(中心力场情况下,非相对论极限下出现自旋-轨道耦合项)(为什么连H的具体形式都不用?H中只含有一个未知项V®,只影响径向部分?)计算得到空间角度、自旋分量的波函数

波函数 ϕ \phi ϕ变成向量形式 ( ϕ ϕ ) \begin{pmatrix} \phi \\\\ \phi \\\\ \end{pmatrix} ϕϕ,算符 A A A也变成矩阵形式 ( A A A A ) \begin{pmatrix} A & A \\\\ A & A\\\\ \end{pmatrix} AAAA也可以理解

碱金属双线结构与反常Zeeman效应

总自旋是一个矩阵的向量?

轨道角动量算符的矩阵形式?是有限维的吗
动量表象下自旋怎么表示?

自旋角动量在空间任意方向上的投影(比如说z 轴)只能取两个值(这个任意方向必须是外磁场的方向吗?不然任意方向一直变,到底自旋角动量是朝哪个方向,大小多少都不知道了。)(只有观测时才能得到两个值中间的一个,其余情况下都是叠加态,而xyz不能同时观测)
自旋这个正负1/2到底是啥
自旋角动量、自旋磁矩,分别代表了什么,关系是什么
轨道角动量、轨道磁矩的关系,

自旋与位置算符是对易的?

直接定义自旋本征值区分费米子与玻色子?

自旋给出了什么结论,除了对两个现象的解释

自旋xyz彼此之间对否对易?不对易,不能同时测量
Pauli矩阵有什么应用

为什么和 s ⋅ l s\cdot l sl不等于0就不是守恒量(哈密顿量中含有这一项)
s是二维矩阵,l是无穷维矩阵?两者怎么相互点乘、对易、相加?
为什么自旋的分量就是1/2,这是定理?或者是从相对论量子力学中推导出来的,我们暂时接受下来?

总自旋是各自旋之和?标量还是向量之和?

自旋是可观测量吗?

厄密算符

定义式 ⟨ ψ ∣ F φ > → < F ψ ∣ φ > \langle\psi|F \varphi>\rightarrow<F \psi| \varphi> ψFφ><Fψφ>
性质
本征值
本征态

厄密算符与幺正变换的联系与区别
与量子计算中gate与measurement的联系

电子在磁场中的运动

光谱的精细结构:自旋引起
Zeeman效应
反常Zeeman效应

landau能级

隧穿效应

实际情况下测定的隧穿概率与书上描述的是否一致?

不确定关系

是什么推导得到的不确定关系
两个不对易的算符

量子力学变分法

变分原理:把一个力学问题(或其他学科的问题)用变分法化为求泛函极值(或驻值)的问题,就称为该物理问题 (或其他学科的问题)的变分原理。
量子力学变分原理:已知系统的哈密顿量H,则基态波函数与对应的基态能量可以通过求解能量平均值 H ˉ = ( ψ , H ψ ) \bar{H}=(\psi, H \psi) Hˉ=(ψ,Hψ) ψ \psi ψ的极值得到,条件是 ⟨ ψ ∣ ψ ⟩ = 1 \langle \psi|\psi \rangle=1 ψψ=1。(使平均能量取极小值的波函数为基态波函数,极小值为基态能量,这很好证明。假设下面的条件是对的:H所对应的正交归一本征波函数簇所张成的空间就是 L 2 L^2 L2可积空间。证明:满足 ⟨ ψ ∣ ψ ⟩ = 1 \langle \psi|\psi \rangle=1 ψψ=1的任意函数 ϕ \phi ϕ可以对H的本征波函数簇展开 ϕ = ∑ n a n ψ n \phi=\sum_{n} a_{n} \psi_{n} ϕ=nanψn,其中 ∑ n a n 2 = 1 \sum_n a_n^2=1 nan2=1,则 H ˉ = ( ϕ , H ϕ ) = ∑ n a n 2 E n \bar{H}=(\phi, H \phi)=\sum_n a_n^2 E_n Hˉ=(ϕ,Hϕ)=nan2En的极值在 a n = 1 a_n=1 an=1时取得,对应 H ˉ = E 0 \bar{H}=E_0 Hˉ=E0 ϕ = ψ 0 \phi=\psi_0 ϕ=ψ0
求n级激发态波函数与能量时,要求待定波函数与基态以及n-1级激发态都正交,再变分得到n级激发态。

应用的是条件极值的变分法(变分法方面的教学比较少,因为比较艰深,本人暂避其锋芒。)

猜测:最后求解,是通过试探波函数(一组完备基底的线性组合),代入求解极值的方程对组合系数求微分,确定系数后确定最终波函数与能量(有点类似微分方程的解析解,把待求解函数做泰勒展开)

Ritz变分法,直接用未归一的波函数求能量平均值,再求极值,绕过了条件极值。例子没大看懂。

原理清楚了,但具体怎么操作还不清楚。
第一步:普通变分法怎么处理问题
第二步:条件变分法怎么处理问题

https://zhuanlan.zhihu.com/p/157550283
https://zhuanlan.zhihu.com/p/20718489

微扰论

困惑:
定态非简并微扰论:可能我唯一的顾虑就是近似的收敛性吧。
目前比较能接受的理解是,这只是一个工具,提供一种思路,用来解决已知哈密顿量上的小微扰问题,给出了近似不同级数的推导与结论,但是误差有多大、是否收敛,你们自己到实际问题里面去试吧。
实在要理解这个工具的适用范围、收敛程度,去问数学家吧,摄动法好像也是物理学家的东西。
有几篇摄动还是微扰的收敛性讨论的论文待看。
还有关于波函数的确定,处理方法的正确性,仍然没有完全接受。微扰论

解释:
至于将待求本征值、本征态对 λ \lambda λ做展开,对于确定的 H = H 0 + H ′ H=H^{0}+H^{\prime} H=H0+H,其有确定的本征值与本征态。而对于含变量 λ \lambda λ H = H 0 + λ H ′ H=H^{0}+\lambda H^{\prime} H=H0+λH,其也有确定的本征值本征态,而且都是 λ \lambda λ的函数。那么将 E ( λ ) E(\lambda) E(λ) ψ ( r , ⋯   , λ ) \psi(r,\cdots,\lambda) ψ(r,,λ) λ = 0 \lambda=0 λ=0处进行泰勒展开应该是没有疑惑的。那么有 H ψ = E ψ H\psi=E\psi Hψ=Eψ,根据泰勒展开的唯一性? λ \lambda λ同项系数划等号。( H ψ = E ψ H\psi=E\psi Hψ=Eψ如果 ( E ψ ) ( λ ) (E\psi)(\lambda) (Eψ)(λ) E ( λ ) ψ ( λ ) E(\lambda)\psi(\lambda) E(λ)ψ(λ)的泰勒展开一样,那么右边是 ( E ψ ) ( λ ) (E\psi)(\lambda) (Eψ)(λ)的泰勒展开。而左边是 λ \lambda λ的多项式,根据泰勒展开的唯一性,系数相等。其实考虑到 λ \lambda λ作为变量的性质,就可以划等号了。)求得系数,令 λ = 1 \lambda=1 λ=1得到近似解,收敛性应该取决于本征值本征态对于 λ \lambda λ是否解析地变换.
又产生一个疑惑 λ = 1 \lambda=1 λ=1时,使余项收敛于0的是什么力量,考虑数学的泰勒展开。

探究:在求解矩阵特征值问题上应用微扰论
1、用python程序计算得到的特征值与理论得到的存在偏差,。是浮点型数据误差造成的。
2、量子力学中微扰波函数中,有类似于 ⟨ n ( 0 ) ∣ n ⟩ = 1 \left\langle n^{(0)} \mid n\right\rangle=1 n(0)n=1的要求,这在 2 × 2 2\times2 2×2矩阵中似乎没法实现?待具体研究

工作:先把微扰论的推导过程理一下,给个导图,然后把整个过程推到矩阵体系中,用具体例子来具体化整个过程。
可视化误差大小。具体矩阵例子求解过程可以程序化。
再看看,保留疑惑,看看例题(有一个题目中,高阶微扰都为0,微扰为常数微扰,这对我计算矩阵微扰时高阶微扰为0遥相呼应)

idea
摄动法:
对于含微扰的一元二次方程 x 2 + 2 ϵ x = 1 x^{2}+2 \epsilon x=1 x2+2ϵx=1,其解中必定也含有微扰项 ϵ \epsilon ϵ,则解的渐进展开就是精确解在微扰 ϵ \epsilon ϵ为0处关于微扰的泰勒展开?
而量子力学里的微扰论,对能量的展开可以是 E ( λ ) E(\lambda) E(λ) E ( 0 ) E(0) E(0)处的展开,而 ψ ( r , t , λ ) \psi(r,t,\lambda) ψ(r,t,λ)是多元函数在 ψ ( r , t , 0 ) \psi(r,t,0) ψ(r,t,0)处的展开, r , t r,t r,t视为符号进行泰勒展开。 ψ n = ψ n ( 0 ) + λ ψ n ( 1 ) + λ 2 ψ n ( 2 ) + ⋯ \psi_{n}=\psi_{n}^{(0)}+\lambda \psi_{n}^{(1)}+\lambda^{2} \psi_{n}^{(2)}+\cdots ψn=ψn(0)+λψn(1)+λ2ψn(2)+

ψ n = ψ n ( 0 ) + λ ψ n ( 1 ) + λ 2 ψ n ( 2 ) + ⋯ \psi_{n}=\psi_{n}^{(0)}+\lambda \psi_{n}^{(1)}+\lambda^{2} \psi_{n}^{(2)}+\cdots ψn=ψn(0)+λψn(1)+λ2ψn(2)+

力学(十一)——微扰论(一)
感到困惑、无法接受,可能来源于对收敛性的质疑,
困惑:是什么使一级近似不能直接一步到位,是什么使近似级数步步趋近,是什么使级数最后收敛趋近
为什么一级近似可以确定下来,
为什么不能只展开能量或者波函呢?

摄动法:
VIP:非线性微分方程的近似解析求解——摄动法
真正的解析利器!摄动法

矩阵微扰 - 算子的矩阵表示

https://wuli.wiki//online/AprPtr.html

简并与非简并微扰的本质区别是什么?为什么进行不一样的处理步骤?
只要有一个简并的能量值,那么进行微扰修正时,就算未受扰能量值不是简并的,也需要进行简并计算吗?
(曾书上简并微扰,到解开简并的地方就停止了,得到的结果是简并如果仍然保留则波函数仍然无法确定,如果解除了也没有给出后续的步骤)
如果解除了简并,则可以确定未受扰波函数,则后续是直接从非简并开始算吗?
为什么不是任意简并未受扰波函的组合都可以呢?
处理简并能级的微扰问题时,如果任意选取未受扰波函,则一阶微扰能量无法完全确定?
(曾书上,精髓是把微扰哈密顿量V对角化?怎么理解)

后面还有含时微扰论!!!量子跃迁,暂时没看

附录

量子力学与线性代数、泛函分析的关系

本征值问题就是矩阵对角化问题?

一些命题

波包到底是什么?什么理论?
1、命题正确性的证明
2、该命题会带来什么,物理现象?
电子总波函数必须是交换反对称的

系统自由度等于好量子数的数目(这个自由度是经典的还是量子的?)
全同粒子
好量子数
光子自旋为1?
二次量子化

量子力学算符定义式与对易式

定义式

坐标表象下
角动量 l = r × p l=r\times p l=r×p

球坐标表象?

对易式

是否有矢量之间的对易关系,是否有矢量与标量之间的对易关系,是否有必要有(对解决实际问题有没有帮助)?
[ j , l ⋅ s ] = 0 [j,l\cdot s] = 0 [j,ls]=0 $8.2(3)

[ r α , p β ] = i ℏ δ α β [r_\alpha,p_\beta]=i\hbar \delta_{\alpha \beta} [rα,pβ]=iδαβ

[r,p]
[r,p^2]
[pr,p^2]
……

量纲分析

分析不同领域中常数的量纲(令这些参数等于1,并去掉量纲,会带来什么?)
ℏ \hbar 的量纲为 J s Js Js
光速c
玻尔兹曼常数

   日常中广泛应用的单位都是被人为定义的,并不是物理或者数学上的必须,我们只是习惯了并无法从这个体系中轻易改变出来。
比如日常中定义的米m,经过了几次更新迭代,地球上特定两点之间的距离、原子激发波长、光在一秒内走的路程。那么问题又来了,秒是如何定义的呢?秒定义为原子的辐射周期。
也就是说,这些单位都是人为定义的,那么我们为什么不能自己定义一个单位呢,可以从常识单位一一映射过去吗?会带来什么?(如果可以,那么违反常识单位体系的公式也就可以理解了)
例子,比如相对论中的 E 2 = p 2 c 2 + m 2 c 4 E^2=p^2c^2+m^2c^4 E2=p2c2+m2c4,令c等于1,则简化等式。(但是怎么改变量纲体系的?)
看看有哪些基本单位
自然单位制(最终量纲?)

待完成

自旋
中心力场问题
力学量表示与对易式
表象

数学概念

泛函

概念:从函数到数值(实数、复数)的映射
值域的范围?域内的连续性、收敛性、完备性?
广义函数与泛函的关系?
δ \delta δ函数为泛函里的分布,分布的概念不懂

变分法

概念:求解泛函极值的方法
对于简单泛函(最简单的积分形泛函):
J [ y ( x ) ] = ∫ x 0 x 1 F ( x , y ( x ) , y ′ ( x ) ) d x J[y(x)]=\int_{x_{0}}^{x_{1}} F\left(x, y(x), y^{\prime}(x)\right) d x J[y(x)]=x0x1F(x,y(x),y(x))dx
其中被积函数 F F F称为拉格朗日函数。对该泛函求变分,令一阶变分等于0,得到欧拉-拉格朗日(EL)方程 F y − d d x F y ′ = 0 F_{y}-\frac{d}{d x} F_{y^{\prime}}=0 FydxdFy=0(其中 F y F_y Fy F ( x , y , y ′ ) F(x,y,y^\prime) F(x,y,y) y y y求微分, F y ′ F_{y^\prime} Fy同理),求得其极值(或者说极函数)。

待补充:
变分的推导与证明,类似于微分时的定义
EL方程好像只是必要条件
条件极值怎么求(比如特定长度线围成的图形,圆的面积最大)
利用变分是否可以类比其他微分中的操作,比如梯度、鞍点等

参考
具体可参考变分法基础(老大中)
变分法简介Part 1
变分法入门介绍
欧拉-拉格朗日方程

δ \delta δ函数

δ \delta δ函数的传统定义为 { δ ( x ) ≠ 0 , x ≠ 0 ∫ − x ∞ ( x ) d x = 1 \left\{\begin{array}{l}\delta(x) \neq 0, x \neq 0 \\ \int_{-x}^{\infty}(x) d x=1\end{array}\right. {δ(x)=0,x=0x(x)dx=1,但其实 δ \delta δ函数并不是传统意义上的函数,不能在传统函数领域内对其进行理解。
最重要的性质为 ∫ − ∞ + ∞ f ( x ) δ ( x ) d x = f ( 0 ) \int_{-\infty}^{+\infty} f(x) \delta\left(x\right) \mathrm{d} x=f\left(0\right) +f(x)δ(x)dx=f(0),这样 δ \delta δ函数就是任意 f ( x ) f(x) f(x) f ( 0 ) f(0) f(0)的一个映射,即一个泛函。满足该性质的函数与 δ \delta δ函数等价?

狄拉克 delta 函数中3.2提到了 ∫ − ∞ + ∞ e i k x   d x = 2 π δ ( k ) \int_{-\infty}^{+\infty} \mathrm{e}^{\mathrm{i} k x} \mathrm{~d} x=2 \pi \delta(k) +eikx dx=2πδ(k),可能这个式子严格意义上就是不收敛的。

待考虑,(一)左边会不会满足 ∫ − ∞ + ∞ f ( x ) δ ( x ) d x = f ( 0 ) \int_{-\infty}^{+\infty} f(x) \delta\left(x\right) \mathrm{d} x=f\left(0\right) +f(x)δ(x)dx=f(0),(二)什么地方出现了这样的”不收敛的“积分。

暂时的解决方法:遇到时谨慎,什么地方引出了这个式子,计算过程中又用到了 δ \delta δ函数的什么性质,不能简单地通过传统定义来理解它。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值