计算流体力学中对流项离散格式的讨论

本文探讨了计算流体力学中对流项的离散格式,重点关注中心差分和一阶迎风格式。通过对一维对流扩散方程的分析,讨论了三种关键性质:守恒性、有界性和输运性。中心差分在对流作用较弱时表现良好,但对流强时误差增大;一阶迎风格式虽然精度较低,但始终保持物理意义。文章通过实例和图形对比,展示了两种格式在不同条件下的性能。
摘要由CSDN通过智能技术生成

  在OpenFoam文件的设置过程中,通常需要设置对流项的离散格式。在参考一些资料之后,对此做一个总结。为方便说明,以一维对流扩散方程为例:
d d x ( ρ u ϕ ) = d d x ( Γ d ϕ d x ) \frac{d}{dx}(\rho u \phi)= \frac{d}{dx} (\Gamma \frac{d\phi}{dx}) dxd(ρuϕ)=dxd(Γdxdϕ)
一维对流扩散网格

图1. 一维对流扩散网格示意图

  将上述微分方程作用在上图以P点为中心的一个微元上,用差分代替微分可以得到如下代数方程组:
F e ϕ e − F w ϕ w = D e ( ϕ E − ϕ P ) − D m ( ϕ P − ϕ W ) F_e \phi_e-F_w \phi_w=D_e(\phi_E-\phi_P)-D_m(\phi_P-\phi_W) FeϕeFwϕw=De(ϕEϕP)Dm(ϕPϕW) F w = ( ρ u ) w ; F e = ( ρ u ) e F_w=(\rho u)_w ; F_e=(\rho u)_e Fw=(ρu)w;Fe=(ρu)e D w = Γ w δ x W P ; D w = Γ e δ x P E D_w=\frac{\Gamma_w}{\delta_{xWP}}; D_w=\frac{\Gamma_e}{\delta_{xPE}} Dw=δxWPΓw;Dw=δxPEΓe
   为了准确计算对流-扩散方程,离散格式一般需要满足以下三个特征:守恒性(Conservativeness),有界性(Boundedness)和输运性(Transportiveness).
守恒性: 即通过一个控制面的通量需要保持相等,具体来说,就是在控制体a和控制体b交接的控制面上,流出控制体a的通量与流入控制体b的通量应该保持一致。举例来说,上面的离散过程中扩散项采用了中心差分离散格式。通过计算可知,中心差分离散格式在离散通量时没有使得流经系统的通量因为离散的原因增加或者减少。
扩散项中心查分格式守恒性的示意图

图2. 扩散项中心差分格式守恒性示意图

[ Γ e 1 ϕ 2 − ϕ 1 δ x − q A ] + [ Γ e 2 ϕ 3 − ϕ 2 δ x − Γ w 2 ϕ 2 − ϕ 1 δ x ] + [ Γ e 3 ϕ 4 − ϕ 3 δ x − Γ w 3 ϕ 3 − ϕ 2 δ x ] + [ q B − Γ w 4 ϕ 4 − ϕ 3 δ x ] \begin{aligned} \bigg [\Gamma_{e_1}\frac{\phi_2-\phi_1}{\delta_x}-q_A \bigg]+\bigg [\Gamma_{e_2}\frac{\phi_3-\phi_2}{\delta_x}-\Gamma_{w_2}\frac{\phi_2-\phi_1}{\delta_x} \bigg]+ \\ \bigg [\Gamma_{e_3}\frac{\phi_4-\phi_3}{\delta_x}-\Gamma_{w_3}\frac{\phi_3-\phi_2}{\delta_x} \bigg]+\bigg [q_B-\Gamma_{w_4}\frac{\phi_4-\phi_3}{\delta_x} \bigg] \\ \end{aligned} [Γe1δxϕ2ϕ1qA]+[Γe2δxϕ
  • 3
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值