【CFD理论】对流项-06高分格式

high resolution schemes

  • high order (HO)
  • high resolution (HR)
  • 对流有界评价标准 convection boundedness criterion
  • Normalized Variable Formulation, NVF
  • 总变差变小,total variation diminishing
  • 两种方法,downwind weighting factor-DWF, normalized weighting factor-NWF

对应 O P E N F O A M / n u m e r i c s / d i v / N V D \color{red}对应OPENFOAM/numerics/div/NVD 对应OPENFOAM/numerics/div/NVD
在这里插入图片描述

the normalized variable formulation (NVF)

  • Leonard最早提出
  • Gaskell, Lau 1988简化提出 对流有界评价标准
  • the normalized variable diagram-NVD可以用来分析高阶和高分辨率格式

在这里插入图片描述
NVF
ϕ ~ = ϕ − ϕ U ϕ D − ϕ U ϕ ~ f = f ( ϕ U , ϕ C , ϕ D ) \tilde{\phi}=\frac{\phi-\phi_U}{\phi_D-\phi_U}\\ \tilde\phi_f=f(\phi_U,\phi_C,\phi_D)\\ ϕ~=ϕDϕUϕϕUϕ~f=f(ϕU,ϕC,ϕD)
TVD
r = ϕ P − ϕ U ϕ D − ϕ P r=\frac{\phi_P-\phi_U}{\phi_D-\phi_P} r=ϕDϕPϕPϕU

分情况讨论 ϕ C ~ \tilde{\phi_C} ϕC~

在这里插入图片描述

  • a. & b. 表示C出现极值
  • c & d 表示C出现梯度突变
  • e 表示单调变化

HO schemes into linear relations between ϕ ~ f \tilde \phi_f ϕ~f and ϕ ~ C \tilde \phi_C ϕ~C

ϕ ~ U = 0 ϕ ~ D = 1 \tilde \phi_U=0\\ \tilde \phi_D=1 ϕ~U=0ϕ~D=1
在这里插入图片描述
所有基于三节点以内插值的高阶格式, ϕ ~ f \tilde \phi_f ϕ~f可以表示 ϕ ~ C \tilde \phi_C ϕ~C的线性函数:
ϕ ~ f = ι ϕ ~ C + k \tilde \phi_f=\iota \tilde \phi_C+k ϕ~f=ιϕ~C+k
因此,可以把上述关系表现为NVD图
在这里插入图片描述

the convection boundedness criterion (CBC)

在这里插入图片描述
ϕ ~ f = { f ( ϕ ~ C ) , c o n t i n u o u s , f ( ϕ ~ C ) = 1 , i f   ϕ ~ C = 1 , f ( ϕ ~ C )   w i t h   , i f   0 < ϕ ~ C < 1 , f ( ϕ ~ C ) = 0 , i f   ϕ ~ C = 0 , f ( ϕ ~ C ) = ϕ ~ C , i f   ϕ ~ C < 0   o r   ϕ ~ C > 1 , \begin{equation} \tilde \phi_f=\left\{ \begin{aligned} &f(\tilde \phi_C)& , & continuous, \\ &f(\tilde \phi_C)=1& , & if\ \tilde \phi_C=1, \\ &f(\tilde \phi_C) \ with\ & , & if \ 0\lt \tilde \phi_C \lt 1, \\ &f(\tilde \phi_C)=0& , & if\ \tilde \phi_C=0, \\ &f(\tilde \phi_C)=\tilde \phi_C& , & if \ \tilde \phi_C\lt 0\ or\ \tilde \phi_C \gt 1, \\ \end{aligned} \right. \end{equation} ϕ~f= f(ϕ~C)f(ϕ~C)=1f(ϕ~C) with f(ϕ~C)=0f(ϕ~C)=ϕ~C,,,,,continuous,if ϕ~C=1,if 0<ϕ~C<1,if ϕ~C=0,if ϕ~C<0 or ϕ~C>1,

  • 高阶格式,对于 ϕ ~ C \tilde \phi_C ϕ~C必须经过(0,0),(1,1)两个点
  • ϕ ~ C < 0 , ϕ ~ C > 1 \tilde \phi_C<0,\tilde \phi_C>1 ϕ~C<0,ϕ~C>1非单调区间,采用迎风格式

high resolution (hr) schemes

  • MINMOD
    ϕ ~ f = { 3 2 ϕ ~ C , 0 ≤   ϕ ~ C ≤ 1 2 1 2 ϕ ~ C + 1 2 , 1 2 ≤ ϕ ~ C ≤ 1 ϕ ~ C , e l s e w h e r e \begin{equation} \tilde \phi_f=\left\{ \begin{aligned} &\frac{3}{2}\tilde \phi_C& , & 0\le\ \tilde \phi_C\le\frac{1}{2} \\ &\frac{1}{2}\tilde \phi_C+\frac{1}{2} & , &\frac{1}{2}\le \tilde \phi_C \le 1\\ &\tilde \phi_C& , & elsewhere\\ \end{aligned} \right. \end{equation} ϕ~f= 23ϕ~C21ϕ~C+21ϕ~C,,,0 ϕ~C2121ϕ~C1elsewhere
divSchemes
{
    default         none;
    div(phi,U)      Gauss Minmod;
}

在这里插入图片描述
Minmod divergence scheme

  • Bounded CD
    ϕ ~ f = { 1 2 ϕ ~ C + 1 2 , 0 ≤ ϕ ~ C ≤ 1 ϕ ~ C , e l s e w h e r e \begin{equation} \tilde \phi_f=\left\{ \begin{aligned} &\frac{1}{2}\tilde \phi_C+\frac{1}{2} & , &0\le \tilde \phi_C \le 1\\ &\tilde \phi_C& , & elsewhere\\ \end{aligned} \right. \end{equation} ϕ~f= 21ϕ~C+21ϕ~C,,0ϕ~C1elsewhere

  • OSHER
    ϕ ~ f = { 3 2 ϕ ~ C , 0 ≤   ϕ ~ C ≤ 2 3 1 , 2 3 ≤ ϕ ~ C ≤ 1 ϕ ~ C , e l s e w h e r e \begin{equation} \tilde \phi_f=\left\{ \begin{aligned} &\frac{3}{2}\tilde \phi_C& , & 0\le\ \tilde \phi_C\le\frac{2}{3} \\ &1 & , &\frac{2}{3}\le \tilde \phi_C \le 1\\ &\tilde \phi_C& , & elsewhere\\ \end{aligned} \right. \end{equation} ϕ~f= 23ϕ~C1ϕ~C,,,0 ϕ~C3232ϕ~C1elsewhere

  • SMART
    ϕ ~ f = { 3 4 ϕ ~ C + 3 8 , 0 ≤   ϕ ~ C ≤ 5 6 1 , 5 6 ≤ ϕ ~ C ≤ 1 ϕ ~ C , e l s e w h e r e \begin{equation} \tilde \phi_f=\left\{ \begin{aligned} &\frac{3}{4}\tilde \phi_C+\frac{3}{8}& , & 0\le\ \tilde \phi_C\le\frac{5}{6} \\ &1 & , &\frac{5}{6}\le \tilde \phi_C \le 1\\ &\tilde \phi_C& , & elsewhere\\ \end{aligned} \right. \end{equation} ϕ~f= 43ϕ~C+831ϕ~C,,,0 ϕ~C6565ϕ~C1elsewhere

divSchemes
{
    default         none;
    div(phi,U)      Gauss QUICK;
}

在这里插入图片描述
SMART(QUICK)

  • STOIC
    ϕ ~ f = { 1 2 ϕ ~ C + 1 2 , 0 ≤   ϕ ~ C ≤ 1 2 3 4 ϕ ~ C + 3 8 , 1 2 ≤   ϕ ~ C ≤ 5 6 1 , 5 6 ≤ ϕ ~ C ≤ 1 ϕ ~ C , e l s e w h e r e \begin{equation} \tilde \phi_f=\left\{ \begin{aligned} &\frac{1}{2}\tilde \phi_C+\frac{1}{2}& , & 0\le\ \tilde \phi_C\le\frac{1}{2} \\ &\frac{3}{4}\tilde \phi_C+\frac{3}{8}& , & \frac{1}{2}\le\ \tilde \phi_C\le\frac{5}{6} \\ &1 & , &\frac{5}{6}\le \tilde \phi_C \le 1\\ &\tilde \phi_C& , & elsewhere\\ \end{aligned} \right. \end{equation} ϕ~f= 21ϕ~C+2143ϕ~C+831ϕ~C,,,,0 ϕ~C2121 ϕ~C6565ϕ~C1elsewhere
  • MUSCL
    ϕ ~ f = { 2 ϕ ~ C , 0 ≤   ϕ ~ C ≤ 1 4 ϕ ~ C + 3 4 , 1 4 ≤   ϕ ~ C ≤ 3 4 1 , 3 4 ≤ ϕ ~ C ≤ 1 ϕ ~ C , e l s e w h e r e \begin{equation} \tilde \phi_f=\left\{ \begin{aligned} &2\tilde \phi_C& , & 0\le\ \tilde \phi_C\le\frac{1}{4} \\ &\tilde \phi_C+\frac{3}{4}& , & \frac{1}{4}\le\ \tilde \phi_C\le\frac{3}{4} \\ &1 & , &\frac{3}{4}\le \tilde \phi_C \le 1\\ &\tilde \phi_C& , & elsewhere\\ \end{aligned} \right. \end{equation} ϕ~f= 2ϕ~Cϕ~C+431ϕ~C,,,,0 ϕ~C4141 ϕ~C4343ϕ~C1elsewhere
divSchemes
{
    default         none;
    div(phi,U)      Gauss MUSCL;
}

在这里插入图片描述
MUSCL

  • SUPERBEE
    ϕ ~ f = { 1 2 + 1 2 ϕ ~ C , 0 ≤   ϕ ~ C ≤ 1 2 3 2 ϕ ~ C , 1 2 ≤   ϕ ~ C ≤ 2 3 1 , 2 3 ≤ ϕ ~ C ≤ 1 ϕ ~ C , e l s e w h e r e \begin{equation} \tilde \phi_f=\left\{ \begin{aligned} &\frac{1}{2}+\frac{1}{2}\tilde \phi_C& , & 0\le\ \tilde \phi_C\le\frac{1}{2} \\ &\frac{3}{2}\tilde \phi_C& , & \frac{1}{2}\le\ \tilde \phi_C\le\frac{2}{3} \\ &1 & , &\frac{2}{3}\le \tilde \phi_C \le 1\\ &\tilde \phi_C& , & elsewhere\\ \end{aligned} \right. \end{equation} ϕ~f= 21+21ϕ~C23ϕ~C1ϕ~C,,,,0 ϕ~C2121 ϕ~C3232ϕ~C1elsewhere
  • Modified SMART
    ϕ ~ f = { 3 ϕ ~ C , 0 ≤   ϕ ~ C ≤ 1 6 3 4 ϕ ~ C + 3 8 , 1 6 ≤   ϕ ~ C ≤ 7 10 1 3 ϕ ~ C + 2 3 , 7 10 ≤   ϕ ~ C ≤ 1 ϕ ~ C , e l s e w h e r e \begin{equation} \tilde \phi_f=\left\{ \begin{aligned} &3\tilde \phi_C& , & 0\le\ \tilde \phi_C\le\frac{1}{6} \\ &\frac{3}{4}\tilde \phi_C+\frac{3}{8}& , & \frac{1}{6} \le\ \tilde \phi_C\le\frac{7}{10} \\ &\frac{1}{3}\tilde \phi_C+\frac{2}{3}& , & \frac{7}{10} \le\ \tilde \phi_C\le1 \\ &\tilde \phi_C& , & elsewhere\\ \end{aligned} \right. \end{equation} ϕ~f= 3ϕ~C43ϕ~C+8331ϕ~C+32ϕ~C,,,,0 ϕ~C6161 ϕ~C107107 ϕ~C1elsewhere
  • Modified STOIC
    ϕ ~ f = { 3 ϕ ~ C , 0 ≤   ϕ ~ C ≤ 1 5 1 2 ϕ ~ C + 1 2 , 1 5 ≤   ϕ ~ C ≤ 1 2 3 4 ϕ ~ C + 3 8 , 1 2 ≤   ϕ ~ C ≤ 7 10 1 3 ϕ ~ C + 2 3 , 7 10 ≤   ϕ ~ C ≤ 1 ϕ ~ C , e l s e w h e r e \begin{equation} \tilde \phi_f=\left\{ \begin{aligned} &3\tilde \phi_C& , & 0\le\ \tilde \phi_C\le\frac{1}{5} \\ &\frac{1}{2}\tilde \phi_C+\frac{1}{2}& , & \frac{1}{5} \le\ \tilde \phi_C\le\frac{1}{2} \\ &\frac{3}{4}\tilde \phi_C+\frac{3}{8}& , & \frac{1}{2} \le\ \tilde \phi_C\le\frac{7}{10} \\ &\frac{1}{3}\tilde \phi_C+\frac{2}{3}& , & \frac{7}{10} \le\ \tilde \phi_C\le1 \\ &\tilde \phi_C& , & elsewhere\\ \end{aligned} \right. \end{equation} ϕ~f= 3ϕ~C21ϕ~C+2143ϕ~C+8331ϕ~C+32ϕ~C,,,,,0 ϕ~C5151 ϕ~C2121 ϕ~C107107 ϕ~C1elsewhere
  • Modified SUPERBEE
    ϕ ~ f = { 2 ϕ ~ C , 0 ≤   ϕ ~ C ≤ 1 3 1 2 ϕ ~ C + 1 2 , 1 3 ≤   ϕ ~ C ≤ 1 2 3 2 ϕ ~ C , 1 2 ≤   ϕ ~ C ≤ 2 3 1 , 2 3 ≤   ϕ ~ C ≤ 1 ϕ ~ C , e l s e w h e r e \begin{equation} \tilde \phi_f=\left\{ \begin{aligned} &2\tilde \phi_C& , & 0\le\ \tilde \phi_C\le\frac{1}{3} \\ &\frac{1}{2}\tilde \phi_C+\frac{1}{2}& , & \frac{1}{3} \le\ \tilde \phi_C\le\frac{1}{2} \\ &\frac{3}{2}\tilde \phi_C& , & \frac{1}{2} \le\ \tilde \phi_C\le\frac{2}{3} \\ &1& , & \frac{2}{3} \le\ \tilde \phi_C\le1 \\ &\tilde \phi_C& , & elsewhere\\ \end{aligned} \right. \end{equation} ϕ~f= 2ϕ~C21ϕ~C+2123ϕ~C1ϕ~C,,,,,0 ϕ~C3131 ϕ~C2121 ϕ~C3232 ϕ~C1elsewhere
    在这里插入图片描述

the TVD framework

ϕ f = ϕ C + 1 2 ψ ( r f ) ( ϕ D − ϕ C ) , w i t h   r f = ϕ C − ϕ U ϕ D − ϕ C \phi_f=\phi_C+\frac{1}{2}\psi(r_f)(\phi_D-\phi_C),with\ r_f=\frac{\phi_C-\phi_U}{\phi_D-\phi_C} ϕf=ϕC+21ψ(rf)(ϕDϕC),with rf=ϕDϕCϕCϕU
{ U p w i n d , ψ ( r f ) = 0 D o w n w i n d , ψ ( r f ) = 2 F R O M M , ψ ( r f ) = 1 + r f 2 S O U , ψ ( r f ) = r f C D , ψ ( r f ) = 1 Q U I C K , ψ ( r f ) = 3 + r f 4 \begin{equation} \left\{ \begin{aligned} &Upwind& , & \psi(r_f)=0 \\ &Downwind& , & \psi(r_f)=2 \\ &FROMM& , & \psi(r_f)=\frac{1+r_f}{2} \\ &SOU& , & \psi(r_f)=r_f \\ &CD& , & \psi(r_f)=1\\ &QUICK& , & \psi(r_f)=\frac{3+r_f}{4} \\ \end{aligned} \right. \end{equation} UpwindDownwindFROMMSOUCDQUICK,,,,,,ψ(rf)=0ψ(rf)=2ψ(rf)=21+rfψ(rf)=rfψ(rf)=1ψ(rf)=43+rf

The NVF-TVD relation

r f = ϕ C − ϕ U ϕ D − ϕ C = ( ϕ C − ϕ U ) / ( ϕ D − ϕ U ) ( ϕ D + ϕ U + ϕ U − ϕ C ) / ( ϕ D − ϕ U ) = ϕ ~ C 1 − ϕ ~ C ⇒ ϕ ~ C = r f 1 + r f r_f=\frac{\phi_C-\phi_U}{\phi_D-\phi_C}=\frac{(\phi_C-\phi_U)/(\phi_D-\phi_U)}{(\phi_D+\phi_U+\phi_U-\phi_C)/(\phi_D-\phi_U)}=\frac{\tilde \phi_C}{1-\tilde \phi_C}\\ \Rightarrow \tilde \phi_C=\frac{r_f}{1+r_f} rf=ϕDϕCϕCϕU=(ϕD+ϕU+ϕUϕC)/(ϕDϕU)(ϕCϕU)/(ϕDϕU)=1ϕ~Cϕ~Cϕ~C=1+rfrf

example11.1

在这里插入图片描述
在这里插入图片描述

  • 控制体面积
    Δ A i = 2 × 1 0 − 2 m 2 \Delta A_i=2\times10^{-2}m^2 ΔAi=2×102m2
  • 节点之间的距离
    Δ ξ = 2 / 3 × 1 0 − 2 m \Delta \xi=2/\sqrt 3\times10^{-2}m Δξ=2/3 ×102m
  • node1
    face AB:   k × ( T 2 − T P ) 2 / 3 × 1 0 − 2 × 2 × 1 0 − 2 = k 3 ( T 2 − T P ) \ k\times\frac{(T_2-T_P)}{2/\sqrt 3\times10^{-2}}\times 2\times 10^{-2}=k\sqrt 3(T_2-T_P)  k×2/3 ×102(T2TP)×2×102=k3 (T2TP)
    face BC:   k × ( T 2 − T P ) 2 / 3 × 1 0 − 2 × 2 × 1 0 − 2 = k 3 ( T 8 − T P ) \ k\times\frac{(T_2-T_P)}{2/\sqrt 3\times10^{-2}}\times 2\times 10^{-2}=k\sqrt 3(T_8-T_P)  k×2/3 ×102(T2TP)×2×102=k3 (T8TP)
    face AC:   k × ( T 2 − T P ) 1 / 3 × 1 0 − 2 × 2 × 1 0 − 2 = 2 k 3 ( T A C − T P ) \ k\times\frac{(T_2-T_P)}{1/\sqrt 3\times10^{-2}}\times 2\times 10^{-2}=2k\sqrt 3(T_{AC}-T_P)  k×1/3 ×102(T2TP)×2×102=2k3 (TACTP)
    ∑ a l l   s u r f a c e s D i ( T n b − T P ) = 0 \sum_{all\ surfaces}D_i(T_{nb}-T_P)=0 all surfacesDi(TnbTP)=0
    k 3 ( T 2 − T P ) + k 3 ( T 8 − T P ) + 2 k 3 ( T A C − T P ) = 0 k\sqrt 3(T_2-T_P)+k\sqrt 3(T_8-T_P)+2k\sqrt 3(T_{AC}-T_P)=0 k3 (T2TP)+k3 (T8TP)+2k3 (TACTP)=0
    4 T 1 = T 2 + T 8 + 2 × T A C 4T_1=T_2+T_8+2\times T_{AC} 4T1=T2+T8+2×TAC
    4 T 1 = T 2 + T 8 + 1000 4T_1=T_2+T_8+1000 4T1=T2+T8+1000
  • node2
    face AB:   k × ( T 1 − T P ) 2 / 3 × 1 0 − 2 × 2 × 1 0 − 2 = k 3 ( T 1 − T P ) \ k\times\frac{(T_1-T_P)}{2/\sqrt 3\times10^{-2}}\times 2\times 10^{-2}=k\sqrt 3(T_1-T_P)  k×2/3 ×102(T1TP)×2×102=k3 (T1TP)
    face BD:   k × ( T 3 − T P ) 2 / 3 × 1 0 − 2 × 2 × 1 0 − 2 = k 3 ( T 3 − T P ) \ k\times\frac{(T_3-T_P)}{2/\sqrt 3\times10^{-2}}\times 2\times 10^{-2}=k\sqrt 3(T_3-T_P)  k×2/3 ×102(T3TP)×2×102=k3 (T3TP)
    face AD:   0 \ 0  0
    ∑ a l l   s u r f a c e s D i ( T n b − T P ) = 0 \sum_{all\ surfaces}D_i(T_{nb}-T_P)=0 all surfacesDi(TnbTP)=0
    k 3 ( T 1 − T P ) + k 3 ( T 3 − T P ) + 0 = 0 k\sqrt 3(T_1-T_P)+k\sqrt 3(T_3-T_P)+0=0 k3 (T1TP)+k3 (T3TP)+0=0
    2 T 2 = T 1 + T 3 2T_2=T_1+T_3 2T2=T1+T3
  • node3
    face BD:   k × ( T 2 − T P ) 2 / 3 × 1 0 − 2 × 2 × 1 0 − 2 = k 3 ( T 2 − T P ) \ k\times\frac{(T_2-T_P)}{2/\sqrt 3\times10^{-2}}\times 2\times 10^{-2}=k\sqrt 3(T_2-T_P)  k×2/3 ×102(T2TP)×2×102=k3 (T2TP)
    face ED:   k × ( T 4 − T P ) 2 / 3 × 1 0 − 2 × 2 × 1 0 − 2 = k 3 ( T 4 − T P ) \ k\times\frac{(T_4-T_P)}{2/\sqrt 3\times10^{-2}}\times 2\times 10^{-2}=k\sqrt 3(T_4-T_P)  k×2/3 ×102(T4TP)×2×102=k3 (T4TP)
    face BE:   k × ( T B E − T P ) 1 / 3 × 1 0 − 2 × 2 × 1 0 − 2 = 2 k 3 ( T B E − T P ) \ k\times\frac{(T_{BE}-T_P)}{1/\sqrt 3\times10^{-2}}\times 2\times 10^{-2}=2k\sqrt 3(T_{BE}-T_P)  k×1/3 ×102(TBETP)×2×102=2k3 (TBETP)
    ∑ a l l   s u r f a c e s D i ( T n b − T P ) = 0 \sum_{all\ surfaces}D_i(T_{nb}-T_P)=0 all surfacesDi(TnbTP)=0
    k 3 ( T 2 − T P ) + k 3 ( T 4 − T P ) + 2 k 3 ( T B E − T P ) = 0 k\sqrt 3(T_2-T_P)+k\sqrt 3(T_4-T_P)+2k\sqrt 3(T_{BE}-T_P)=0 k3 (T2TP)+k3 (T4TP)+2k3 (TBETP)=0
    4 T 1 = T 2 + T 4 + 2 × T B E 4T_1=T_2+T_4+2\times T_{BE} 4T1=T2+T4+2×TBE
    4 T 1 = T 2 + T 4 + 800 4T_1=T_2+T_4+800 4T1=T2+T4+800
  • node4
    face ED:   k × ( T 3 − T P ) 2 / 3 × 1 0 − 2 × 2 × 1 0 − 2 = k 3 ( T 3 − T P ) \ k\times\frac{(T_3-T_P)}{2/\sqrt 3\times10^{-2}}\times 2\times 10^{-2}=k\sqrt 3(T_3-T_P)  k×2/3 ×102(T3TP)×2×102=k3 (T3TP)
    face EF:   k × ( T 5 − T P ) 2 / 3 × 1 0 − 2 × 2 × 1 0 − 2 = k 3 ( T 5 − T P ) \ k\times\frac{(T_5-T_P)}{2/\sqrt 3\times10^{-2}}\times 2\times 10^{-2}=k\sqrt 3(T_5-T_P)  k×2/3 ×102(T5TP)×2×102=k3 (T5TP)
    face DE:   0 \ 0  0
    ∑ a l l   s u r f a c e s D i ( T n b − T P ) = 0 \sum_{all\ surfaces}D_i(T_{nb}-T_P)=0 all surfacesDi(TnbTP)=0
    k 3 ( T 3 − T P ) + k 3 ( T 5 − T P ) + 0 = 0 k\sqrt 3(T_3-T_P)+k\sqrt 3(T_5-T_P)+0=0 k3 (T3TP)+k3 (T5TP)+0=0
    2 T 4 = T 5 + T 3 2T_4=T_5+T_3 2T4=T5+T3
  • node6&8
    face EH:   k × ( T E H − T P ) 2 / 3 × 1 0 − 2 × 2 × 1 0 − 2 = 2 k 3 ( T E H − T P ) \ k\times\frac{(T_{EH}-T_P)}{2/\sqrt 3\times10^{-2}}\times 2\times 10^{-2}=2k\sqrt 3(T_{EH}-T_P)  k×2/3 ×102(TEHTP)×2×102=2k3 (TEHTP)
    face EG:   k × ( T 5 − T P ) 2 / 3 × 1 0 − 2 × 2 × 1 0 − 2 = k 3 ( T 5 − T P ) \ k\times\frac{(T_5-T_P)}{2/\sqrt 3\times10^{-2}}\times 2\times 10^{-2}=k\sqrt 3(T_5-T_P)  k×2/3 ×102(T5TP)×2×102=k3 (T5TP)
    face HG:   k × ( T 7 − T P ) 1 / 3 × 1 0 − 2 × 2 × 1 0 − 2 = k 3 ( T 7 − T P ) \ k\times\frac{(T_7-T_P)}{1/\sqrt 3\times10^{-2}}\times 2\times 10^{-2}=k\sqrt 3(T_7-T_P)  k×1/3 ×102(T7TP)×2×102=k3 (T7TP)
    ∑ a l l   s u r f a c e s D i ( T n b − T P ) = 0 \sum_{all\ surfaces}D_i(T_{nb}-T_P)=0 all surfacesDi(TnbTP)=0
    k 3 ( T 5 − T P ) + k 3 ( T 7 − T P ) + 2 k 3 ( T E H − T P ) = 0 k\sqrt 3(T_5-T_P)+k\sqrt 3(T_7-T_P)+2k\sqrt 3(T_{EH}-T_P)=0 k3 (T5TP)+k3 (T7TP)+2k3 (TEHTP)=0
    4 T 6 = T 5 + T 7 + 2 × T E H 4T_6=T_5+T_7+2\times T_{EH} 4T6=T5+T7+2×TEH
    4 T 6 = T 5 + T 7 + 400 4T_6=T_5+T_7+400 4T6=T5+T7+400
    4 T 8 = T 1 + T 9 + 400 4T_8=T_1+T_9+400 4T8=T1+T9+400
  • node7&9
    face IG:   k × ( T I G − T P ) 2 / 3 × 1 0 − 2 × 2 × 1 0 − 2 = 2 k 3 ( T I G − T P ) \ k\times\frac{(T_{IG}-T_P)}{2/\sqrt 3\times10^{-2}}\times 2\times 10^{-2}=2k\sqrt 3(T_{IG}-T_P)  k×2/3 ×102(TIGTP)×2×102=2k3 (TIGTP)
    face HG:   k × ( T 6 − T P ) 2 / 3 × 1 0 − 2 × 2 × 1 0 − 2 = k 3 ( T 6 − T P ) \ k\times\frac{(T_6-T_P)}{2/\sqrt 3\times10^{-2}}\times 2\times 10^{-2}=k\sqrt 3(T_6-T_P)  k×2/3 ×102(T6TP)×2×102=k3 (T6TP)
    face IH:   0 \ 0  0
    ∑ a l l   s u r f a c e s D i ( T n b − T P ) = 0 \sum_{all\ surfaces}D_i(T_{nb}-T_P)=0 all surfacesDi(TnbTP)=0
    k 3 ( T 6 − T P ) + 0 + 2 k 3 ( T I G − T P ) = 0 k\sqrt 3(T_6-T_P)+0+2k\sqrt 3(T_{IG}-T_P)=0 k3 (T6TP)+0+2k3 (TIGTP)=0
    3 T 7 = T 6 + T 7 + 2 × T I G 3T_7=T_6+T_7+2\times T_{IG} 3T7=T6+T7+2×TIG
    3 T 7 = T 6 + 1000 3T_7=T_6+1000 3T7=T6+1000
    3 T 9 = T 8 + 1000 3T_9=T_8+1000 3T9=T8+1000
    MATLAB
clc;
clear;
Su=[1000,0,800,0,1000,400,1000,400,1000]';
T=zeros(9,1);
a=zeros(9,9);
a(1,:)=[4,-1,0,0,0,0,0,-1,0];
a(2,:)=[-1,2,-1,0,0,0,0,0,0];
a(3,:)=[0,-1,4,-1,0,0,0,0,0];
a(4,:)=[0,0,-1,2,-1,0,0,0,0];
a(5,:)=[0,0,0,-1,4,-1,0,0,0];
a(6,:)=[0,0,0,0,-1,4,-1,0,0];
a(7,:)=[0,0,0,0,0,-1,3,0,0];
a(8,:)=[-1,0,0,0,0,0,0,4,-1];
a(9,:)=[0,0,0,0,0,0,0,-1,3];
T=a\Su;

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值