matlab 平均梯度,OpenCV 自学笔记33. 计算图像的均值、标准差和平均梯度

本文介绍了如何使用OpenCV计算图像的均值、标准差和平均梯度。均值反映图像亮度,标准差表示像素值离散程度,平均梯度体现图像清晰度。通过meanStdDev()函数计算均值和标准差,通过遍历像素差值计算平均梯度。代码示例中展示了具体实现过程。
摘要由CSDN通过智能技术生成

OpenCV 自学笔记33. 计算图像的均值、标准差和平均梯度

均值、标准差和平均梯度是验证图像质量的常用指标。其中:

均值反映了图像的亮度,均值越大说明图像亮度越大,反之越小;

标准差反映了图像像素值与均值的离散程度,标准差越大说明图像的质量越好;

平均梯度反映了图像的清晰度和纹理变化,平均梯度越大说明图像越清晰;

那么,如何使用OpenCV计算图像的均值、标准差和平均梯度呢?

OpenCV提供了几个函数,可以用来帮助我们计算。

1、计算图像的平均梯度

meanStdDev()函数用于计算一个矩阵的均值和标准差,它的声明如下:

void cv::meanStdDev (

InputArray src,

OutputArray mean,

OutputArray stddev,

InputArray mask = noArray()

)

函数参数

src:输入的源图像或矩阵

mean:输出的均值矩阵

stddev:输出的标准差矩阵

mask:可选的掩码矩阵

使用meanStdDev计算均值和标准差的代码如下:

// 输入图像的路径

// 计算图像的标准差

void cal_mean_stddev(string path) {

Mat src = imread(path);

Mat gray, mat_mean, mat_stddev;

cvtColor(src

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值