对hashMap中,等于6还是小于6红黑树会退化为链表的理解

对hashMap中,等于6还是小于6红黑树会退化为链表的理解:

当对hashMap扩容时,会调用resize方法,resize会以桶(一个哈希表下标下所有元素)为单位,把元素转移到新哈希表中, 当桶为红黑树时,会调用split方法进行红黑树的扩容移动处理。

split方法中会出现红黑树退化为链表情况(整个hashMap中也只有这个方法会出现红黑树退化为链表的情况)。

split方法中,将当前红黑树分割放入lo,hi这两个变量(treeNode类型)里。可以先理解为两条链表。当lo链表中元素<=6,会将lo转换为真正的链表(Node类型),当lo链表中元素>6,则会进行树化处理, 例如对链表中节点的left,right等进行赋值,hi树同理。

以下是split方法源码:

(树化及退树化方法省略)


```java
/**
 * 从hashmap桶(一个哈希表数组某个索引下的元素,可以是单个node,
 * 可以是一个链表,也可以是一颗红黑树,此时为红黑树)中将红黑树分割成两棵树,
 *一颗为高位树hi,一颗为低位树lo,如果hi或者lo树节点太小,该树将会退化为链表
 * 再移动到新哈希表中,该方法仅在resize()方法调用到
 
 *
 * @param map 需要扩容的map,用于红黑树退化链表时,调用当前map类型的
 * replacementNode方法
 * @param tab 新的哈希表,存放扩容后元素
 * @param index 当前索引,扩容是从索引0的桶开始向右,以桶为单位进行扩容的
 * @param bit 扩容前哈希表容量
 */
final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
    //红黑树在node数组上的元素
    TreeNode<K,V> b = this;
    //loHead 低位树头结点, loTail 低位树尾结点
    TreeNode<K,V> loHead = null, loTail = null;
    //hiHead 高位树头结点, hiTail 高位树尾结点
    TreeNode<K,V> hiHead = null, hiTail = null;
    int lc = 0, hc = 0;
    //红黑树为链表转换而成,hashmap链表节点(node类型)在转换成红黑树(treeNode类型)时
    //保留了原有node节点的变量(next等等),数据,用于进行迭代器遍历,及退化为链表
    
    //虽然是红黑树,不过保留了next,可以按照链表方式进行遍历
    for (TreeNode<K,V> e = b, next; e != null; e = next) {
        next = (TreeNode<K,V>)e.next;
        e.next = null;
        //如果当前节点hash与运算扩容前map容量为0,代表扩容后索引位置不变
        //扩容后索引位置不变的节点放在低位树中
        if ((e.hash & bit) == 0) {
            //尾结点为空,此时还未放入输入,设置头结点为e
            if ((e.prev = loTail) == null)
                loHead = e;
           //尾结点不为空,此时已有数据,将尾结点next指向当前数据(尾插法)
            else
                loTail.next = e;
            loTail = e;
            ++lc;
        }
        else {
            if ((e.prev = hiTail) == null)
                hiHead = e;
            else
                hiTail.next = e;
            hiTail = e;
            ++hc;
        }
    }
    //lc,hc从0开始增加,lo树中有6个元素,则lc=6
    //hi树有6个元素,则hc=6

    if (loHead != null) {
        //hashMap中UNTREEIFY_THRESHOLD设置为6
        //lc<=6,将lo树退化为链表,也就是lc树中有6个元素,就会退化为链表
        if (lc <= UNTREEIFY_THRESHOLD)
            tab[index] = loHead.untreeify(map);
            
        /**lc>6 将lc转化为真正的红黑树结构
        *前面lc只是next赋值了,还只是链表结构
        */红黑树需要对parent,left,right等属性赋值
        else {
            tab[index] = loHead;
            if (hiHead != null)  
                loHead.treeify(tab);
        }
    }
    //hi树与lo同理
    if (hiHead != null) {
        if (hc <= UNTREEIFY_THRESHOLD)
            tab[index + bit] = hiHead.untreeify(map);
        else {
            tab[index + bit] = hiHead;
            if (loHead != null)
                hiHead.treeify(tab);
        }
    }
}
/**
*   hi树与lo树区别:
*  hi树放在扩容后哈希表的(旧哈希表index+旧哈希表容量)索引位置
*  lo树放在扩容后哈希表的(旧哈希表index)索引位置
*/

结论:
1.调用到了resize方法才可能会退化,没调用即使长度小于6也不会退化
2.小于等于6,进行退化,是针对分割后lo与hi这两条链表而言的,不能等价于整个树的长度。
3.只有lo链表或者hi链表长度小于等于6,才会进行退化(此时的退化是指将当前链表节点类型从treeNode转为Node)
4.lo,hi链表大于6会进行树化的具体操作
5.如果lo为null,不会进行任何操作,hi同理。

<think>好的,我现在需要回答用户关于JavaHashMap的数据结构转换规则的问题。用户想了解红黑树链表之间的转换规则,包括阈值设定。首先,我需要回忆一下HashMap在JDK1.8及之后的版本中的结构变化。 我记得HashMap在处理哈希冲突时,之前是使用链表,但在1.8之后引入了红黑树。当链表长度超过一定阈值时,链表会转换成红黑树,这样可以提高查询效率。相反,当红黑树的节点数减少到另一个阈值时,会转换回链表。 接下来,用户提到的转换阈值是8和6。我需要确认这些数值的正确性,并解释为什么选择这些特定的数字。根据引用[1],链表红黑树的阈值是8,而红黑树链表的阈值是6。这可能涉及到统计学上的泊松分布,用于减少哈希碰撞的概率,同时避免频繁的结构转换带来的性能开销。 然后,需要解释转换的条件。链表红黑树不仅仅是因为长度超过8,还要检查整个哈希表的容量是否达到MIN_TREEIFY_CAPACITY(默认64)。如果容量不够,会先扩容而不是转换结构,这可能在引用[2]中提到的情况,即当出现红黑树结构时可能说明哈希函数有问题。 另外,当红黑树节点数减少到6时转换回链表,可能是为了避免在节点数接近8时频繁转换,保持一定的缓冲区间。这有助于提高性能稳定性,减少资源消耗。 还需要考虑这些阈值的设计原因,比如泊松分布下链表长度达到8的概率极低,因此选择8作为阈值是一种平衡策略,确保在极端情况下仍能高效操作。同时,转换回链表的阈值设为6而不是8,可以避免在节点数在8附近波动时反复转换结构,引用[1]和[3]可能支持这一点。 最后,需要确保回答结构清晰,分点说明转换条件和设计原因,并引用提供的资料来支持每个观点。同时,生成的相关问题要符合用户可能的后续疑问,例如性能分析、优化方法和应用场景,但根据用户的问题,可能需要调整为与HashMap结构转换相关的问题,如泊松分布的作用、转换条件的具体参数等。</think>关于Java HashMap数据结构转换规则,以下是链表红黑树转换的核心机制: ### 一、数据结构转换规则 1. **链表红黑树条件** 当单个哈希桶的链表长度≥8 **且** 哈希表总容量≥64时触发转换。 公式表达:$$ \text{链表长度} \geq 8 \quad \cap \quad \text{table.length} \geq 64 $$ 若容量不足64,则会优先触发哈希表扩容[^1][^3] 2. **红黑树链表条件** 当红黑树节点数量≤6时自动退化链表 公式表达:$$ \text{树节点数} \leq 6 $$ ### 二、阈值设计原理 | 阈值 | 数值 | 设计依据 | |------|-----|---------| | 树化阈值 | 8 | 基于泊松分布计算,哈希冲突达到8的概率为$0.00000006$,属于极小概率事件 | | 退化阈值 | 6 | 设置2个节点的缓冲区间,防止频繁树化与退化产生性能抖动 | ### 三、关键实现逻辑 ```java // 树化条件判断(HashMap源码节选) if (binCount >= TREEIFY_THRESHOLD - 1) { if (tab.length < MIN_TREEIFY_CAPACITY) resize(); // 优先扩容而非树化 else treeifyBin(tab, hash); } ``` ### 四、工程实践意义 1. 出现红黑树结构时,往往提示哈希算法需要优化(如低效的hashCode()实现)[^2] 2. 红黑树节点存储需要额外维护颜色标记和指针,内存占用是链表的2倍[^3]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值