Expected one of xxx device type 解决方法

本文档详细介绍了在PyTorch编程时遇到的设备错误及其解决方案。当尝试使用'gpu'作为设备字符串时,运行时错误提示预期的设备类型不匹配。正确做法是根据实际可用的设备,如cuda,来指定Tensor的设备。此外,还展示了在条件判断中,如何正确地将Tensor转移到相应设备上进行操作,避免了AttributeError。

问题

出错代码:

DEVICE = torch.device(‘gpu’ if torch.cuda.is_available() else ‘cpu’)

报错信息:

RuntimeError: Expected one of cpu, cuda, xpu, mkldnn, opengl, opencl,
ideep, hip, ve, ort, mlc, xla, lazy, vulkan, meta, hpu device type at
start of device string: gpu

原理

无法识别“gpu”这个字符串,只能识别“cpu, cuda, xpu, mkldnn, opengl, opencl, ideep, hip, ve, ort, mlc, xla, lazy, vulkan, meta, hpu”这样的字符串

解决

将“gpu”改为训练用的设备字符串,我用的是cuda,所以写为

device = torch.device(‘cuda’ if torch.cuda.is_available() else ‘cpu’)

参考文章:https://blog.csdn.net/u014264373/article/details/87640753

衍生问题

出错代码:

if torch.cuda.is_available():#是否可以gpu加速
correct += (predict.gpu() == labels.gpu()).sum()
else:
correct += (predict == labels).sum()

报错信息:

AttributeError: ‘Tensor’ object has no attribute ‘gpu’

原理

device选择的加速设备名称是Tensor的合法属性。由于我使用的设备是cuda,则gpu应该改为cuda。

解决

将“gpu”改为训练用的设备字符串。根据使用的设备名确定修改的属性名称。

if torch.cuda.is_available():#是否可以gpu加速
correct += (predict.cuda() == labels.cuda()).sum()
else:
correct += (predict == labels).sum()

<think>嗯,用户现在遇到了一个TypeError,错误信息是“empty() received an invalid combination of arguments - got (tuple, dtype=NoneType, device=NoneType), but expected one of”。看起来是在使用PyTorch的torch.empty()函数时参数传递有问题。我需要先理解这个错误的原因,然后给出解决方案。 首先,用户可能在调用torch.empty()的时候传入了元组作为参数,但是参数的位置或格式不正确。例如,正确的用法应该是torch.empty(size, dtype=dtype, device=device),其中size是一个表示形状的元组。如果用户错误地将元组和其他参数的位置颠倒了,或者没有正确指定关键字参数,就会导致这个错误。 接下来,我需要回忆torch.empty()的正确用法。函数签名通常是这样的:torch.empty(*size, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False, pin_memory=False)。所以,第一个参数应该是尺寸的元组,后面的参数需要用关键字指定,比如dtypedevice。 用户可能在调用时直接将元组和其他参数作为位置参数传递,而没有使用关键字参数。例如,可能写了torch.empty((2,3), torch.float32, 'cuda'),但正确的应该是torch.empty((2,3), dtype=torch.float32, device='cuda')。这时候位置参数会被认为第二个是dtype,第三个是layout或者其他参数,导致类型不匹配的错误。 另外,检查用户是否在创建张量时混淆了torch.empty和其他函数,比如torch.tensor,它们的参数可能不同。比如,torch.tensor接受数据作为第一个参数,而torch.empty的第一个参数是尺寸的元组。 然后,我需要考虑用户可能的代码示例,找出常见的错误情况。例如,用户可能写了类似下面的代码: x = torch.empty((2, 3), torch.float32) 这里的问题是没有使用关键字参数dtype=,导致第二个参数被解释为其他参数,比如layout,而类型不匹配。正确的应该是x = torch.empty((2,3), dtype=torch.float32)。 另一个可能的错误是用户直接将尺寸参数作为多个参数传递,而不是打包成一个元组。例如,写成torch.empty(2, 3, dtype=torch.float32),这其实是正确的,因为尺寸可以分开传递,但用户可能因为某种原因将尺寸作为元组传递时出了问题,比如忘记解包元组。 不过根据错误信息中的“got (tuple, dtype=NoneType, device=NoneType)”,说明用户传递了一个元组作为第一个参数,而dtypedevice没有正确指定。可能的情况是用户写了类似torch.empty((2,3), None, None),但正确的应该是不传dtypedevice的话,它们会使用默认值,或者显式指定为关键字参数。 总结错误的原因,主要是参数传递的方式不对,可能混淆了位置参数和关键字参数。需要指导用户正确使用torch.empty()的参数格式,确保尺寸作为元组传递,或者作为多个位置参数,而dtypedevice用关键字参数指定。 接下来,我需要给出具体的解决方案步骤,包括正确的代码示例,并解释每个参数的作用。同时,需要提醒用户注意参数顺序和关键字的使用,避免类似的错误。此外,对比其他类似函数如torch.zeros或torch.ones的用法,可能帮助用户理解一致性。 可能还需要提到版本兼容性问题,确保用户使用的PyTorch版本没有变动API,但根据常见的错误情况,更可能是参数传递的问题。此外,检查用户是否在尺寸元组中混入了其他类型的参数,比如字符串,导致整个元组无效,但错误信息显示是tuple类型,所以可能不是这个问题。 最后,需要用简洁明了的中文,分步骤解释如何正确使用torch.empty(),并给出示例代码,帮助用户调整他们的代码,解决这个TypeError。</think>--- ### **错误原因解析** 您在使用 `torch.empty()` 创建张量时,**参数传递方式不符合函数定义要求**。错误信息指出: ``` TypeError: empty() received an invalid combination of arguments - got (tuple, dtype=NoneType, device=NoneType) ``` 表示您尝试将 `tuple`(形状参数)、`dtype` 和 `device` 以错误的方式组合传递,而 PyTorch 的 `torch.empty()` 需要按特定规则接受参数。 --- ### **分步解决方案** #### **1. 理解 `torch.empty()` 的正确语法** `torch.empty()` 的函数定义如下: ```python torch.empty( *size, # 张量形状(多个整数或一个元组) dtype=None, # 数据类型(如 torch.float32) device=None, # 设备(如 'cuda:0' 或 'cpu') requires_grad=False # 是否启用梯度跟踪 ) ``` #### **2. 验证参数传递方式** 错误通常由以下两种场景引发: ##### **场景 1:未正确解包形状参数** - **错误写法**:直接将形状作为元组传递,但未使用 `*` 解包。 ```python # 错误示例 shape = (2, 3) x = torch.empty(shape, dtype=torch.float32, device='cuda') ``` - **原因**:此时 `shape` 会被视为第一个位置参数(一个元组),而 `torch.empty()` 要求形状参数以多个独立整数或解包后的形式传递。 - **修复方法**:使用 `*` 解包元组。 ```python # 正确写法 shape = (2, 3) x = torch.empty(*shape, dtype=torch.float32, device='cuda') ``` ##### **场景 2:混淆位置参数与关键字参数** - **错误写法**:将 `dtype` 或 `device` 作为位置参数传递。 ```python # 错误示例:dtypedevice 未用关键字参数指定 x = torch.empty((2, 3), torch.float32, 'cuda') ``` - **修复方法**:显式使用 `dtype=` 和 `device=`。 ```python # 正确写法 x = torch.empty((2, 3), dtype=torch.float32, device='cuda') ``` #### **3. 完整代码示例** ```python import torch # 示例1:直接传递多个整数作为形状 x1 = torch.empty(2, 3, dtype=torch.float32, device='cuda') print(x1.shape) # 输出: torch.Size([2, 3]) # 示例2:通过解包元组传递形状 shape = (4, 5) x2 = torch.empty(*shape, dtype=torch.int64, device='cpu') print(x2.shape) # 输出: torch.Size([4, 5]) ``` --- ### **常见错误排查表** | 错误现象 | 原因 | 修复方法 | |-----------------------------------|-------------------------------|---------------------------------------------| | `TypeError: empty() got...` | 形状参数未解包或关键字参数缺失 | 使用 `*shape` 或显式指定 `dtype=`、`device=` | | 张量形状不符合预期 | 形状参数被解释为其他参数 | 检查参数顺序,优先传递形状参数 | | 设备或数据类型无效 | 未安装 CUDA 或拼写错误 | 检查 `device` 名称和 `dtype` 拼写 | --- ### **关键注意事项** 1. **形状参数优先级**: 形状参数 `*size` 必须作为第一个参数传递,可以是多个整数(如 `2, 3`)或解包后的元组(如 `*(2, 3)`)。 2. **关键字参数强制要求**: `dtype`、`device` 等参数必须通过 `dtype=`、`device=` 显式指定,不可省略参数名。 3. **与其他函数的对比**: - `torch.zeros((2,3))` 允许直接传递元组作为形状。 - `torch.empty()` 因函数定义差异,需按上述规则处理。 --- ### **扩展应用** 若需创建特定初始化方式的张量,可结合以下方法: ```python # 使用均匀分布初始化 x = torch.empty(2, 3).uniform_(-1, 1) # 使用正态分布初始化 x = torch.empty(2, 3).normal_(mean=0, std=1) ``` --- 通过以上步骤,您应能修复 `TypeError` 并正确使用 `torch.empty()`。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值