大数据组件笔记 -- Kafka

一、简介

Kafka 是一个 分布式 的基于 发布/订阅 模式的 消息队列(Message Queue),主要应用于大数据实时处理领域。

  • 消息队列的两种模式
  1. 点对点模式 一对一 ,消费者主动拉取数据,消息收到后消息清除

在这里插入图片描述

  1. 发布 /订阅模式 一对多 ,消费者消费数据之后不会清除消息

在这里插入图片描述

  • 基础架构

在这里插入图片描述

  1. Producer :消息生产者,就是向kafka broker 发消息的客户端;
  2. Consumer :消息消费者,向kafka broker 取消息的客户端;
  3. Consumer Group (CG):消费者组,由多个consumer 组成。消费者组内每个消费者负
    责消费不同分区的数据,一个分区只能由一个组内消费者消费;消费者组之间互不影响。所
    有的消费者都属于某个消费者组,即消费者组是逻辑上的一个订阅者。
  4. Broker :一台kafka 服务器就是一个broker。一个集群由多个broker 组成。一个broker
    可以容纳多个topic。
  5. Topic :可以理解为一个队列,生产者和消费者面向的都是一个topic;
  6. Partition:为了实现扩展性,一个非常大的topic 可以分布到多个broker(即服务器)上,
    一个topic 可以分为多个partition,每个partition 是一个有序的队列;
  7. Replica:副本,为保证集群中的某个节点发生故障时,该节点上的partition 数据不丢失,且
    kafka仍然能够继续工作 kafka提供了副本机制,一个 topic的每个分区都有若干个副本,一个 leader和若干个 follower。
  8. leader 每个分区多个副本的“主”,生产者发送数据的对象,以及消费者消费数据的对
    象都是 leader。
  9. follower 每个分区多个副本中的“从”,实时从 leader中同步数据,保持和 leader数据
    的同步。 leader发生故障时,某个 follower会成为新的 follower。

二、部署使用

2.1 集群部署

  1. 准备软件包
[omm@bigdata01 soft]# tar -zxf kafka_2.13-2.7.0.tgz -C /opt/module/
[omm@bigdata01 soft]# cd /opt/module/
[omm@bigdata01 module]# ln -s kafka_2.13-2.7.0 kafka
  1. 修改配置文件
[omm@bigdata01 config]# pwd
/opt/module/kafka/config
[omm@bigdata01 config]# cp server.properties{,.bak}
[omm@bigdata01 config]# grep -Ev '^$|^#' server.properties.bak > server.properties
[omm@bigdata01 config]# vi server.properties
[omm@bigdata01 config]# cat server.properties
broker.id=0
num.network.threads=3
num.io.threads=8
socket.send.buffer.bytes=102400
socket.receive.buffer.bytes=102400
socket.request.max.bytes=104857600
log.dirs=/opt/module/kafka/kafka-logs
num.partitions=1
num.recovery.threads.per.data.dir=1
offsets.topic.replication.factor=1
transaction.state.log.replication.factor=1
transaction.state.log.min.isr=1
log.retention.hours=168
log.segment.bytes=1073741824
log.retention.check.interval.ms=300000
zookeeper.connect=bigdata01:2181,bigdata02:2181,bigdata03:2181
zookeeper.connection.timeout.ms=18000
group.initial.rebalance.delay.ms=0
[omm@bigdata01 config]# 
  1. 分发及修改 broker.id
[omm@bigdata01 module]$ xsync kafka
[omm@bigdata02 config]$ pwd
/opt/module/kafka/config
[omm@bigdata02 config]$ grep broker server.properties
broker.id=1
[omm@bigdata03 config]$ grep broker server.properties
broker.id=2
[omm@bigdata03 config]$ 
  1. 群起脚本
#!/bin/bash

for host in bigdata01 bigdata02 bigdata03
do
  echo ""
  echo "---- $host kafka $1  ----"
  echo ""

  case $1 in
  "start")
    ssh $host "/opt/module/kafka/bin/kafka-server-start.sh -daemon /opt/module/kafka/config/server.properties"
  ;;
  "stop")
    ssh $host "/opt/module/kafka/bin/kafka-server-stop.sh /opt/module/kafka/config/server.properties"
  ;;
  esac
done
echo ""

2.2 topic 命令

  • 创建 topic

--partitions:分区数最好设置为 broker-num * data-dir-per-broker * N (e.g. 3*1*N = 3N)

--replication-factor <= broker-num

[omm@bigdata01 bin]$ pwd
/opt/module/kafka/bin
[omm@bigdata01 bin]$ ./kafka-topics.sh --zookeeper bigdata01:2181 --create --partitions 3 --replication-factor 2 --topic first
Created topic first.
  • 列出 topic
[omm@bigdata01 bin]$ ./kafka-topics.sh --zookeeper bigdata01:2181 --list
first
  • topic 详情
[omm@bigdata01 bin]$ ./kafka-topics.sh --zookeeper bigdata01:2181 --describe --topic first
Topic: first	PartitionCount: 3	ReplicationFactor: 2	Configs: 
	Topic: first	Partition: 0	Leader: 1	Replicas: 1,2	Isr: 1,2
	Topic: first	Partition: 1	Leader: 2	Replicas: 2,0	Isr: 2,0
	Topic: first	Partition: 2	Leader: 0	Replicas: 0,1	Isr: 0,1
  • 修改 topic 分区数
[omm@bigdata01 bin]$ ./kafka-topics.sh --zookeeper bigdata01:2181 --alter --topic first --partitions 6
WARNING: If partitions are increased for a topic that has a key, the partition logic or ordering of the messages will be affected
Adding partitions succeeded!
  • 查看 topic 分区在磁盘目录中的分布情况
[omm@bigdata01 kafka-logs]$ pwd
/opt/module/kafka/kafka-logs
[omm@bigdata01 kafka-logs]$ ll | grep first
drwxrwxr-x 2 omm omm 141 Feb 18 14:53 first-1
drwxrwxr-x 2 omm omm 141 Feb 18 14:53 first-2
drwxrwxr-x 2 omm omm 141 Feb 18 14:55 first-4
drwxrwxr-x 2 omm omm 141 Feb 18 14:55 first-5
[omm@bigdata02 kafka-logs]$ ll | grep first
drwxrwxr-x 2 omm omm 141 Feb 18 14:53 first-0
drwxrwxr-x 2 omm omm 141 Feb 18 14:53 first-2
drwxrwxr-x 2 omm omm 141 Feb 18 14:55 first-3
drwxrwxr-x 2 omm omm 141 Feb 18 14:55 first-5
[omm@bigdata03 kafka-logs]$ ll | grep first
drwxrwxr-x 2 omm omm 141 Feb 18 14:53 first-0
drwxrwxr-x 2 omm omm 141 Feb 18 14:53 first-1
drwxrwxr-x 2 omm omm 141 Feb 18 14:55 first-3
drwxrwxr-x 2 omm omm 141 Feb 18 14:55 first-4
[omm@bigdata01 bin]$ ./kafka-topics.sh --zookeeper bigdata01:2181 --describe --topic first
Topic: first	PartitionCount: 6	ReplicationFactor: 2	Configs: 
	Topic: first	Partition: 0	Leader: 1	Replicas: 1,2	Isr: 1,2
	Topic: first	Partition: 1	Leader: 2	Replicas: 2,0	Isr: 2,0
	Topic: first	Partition: 2	Leader: 0	Replicas: 0,1	Isr: 0,1
	Topic: first	Partition: 3	Leader: 1	Replicas: 1,2	Isr: 1,2
	Topic: first	Partition: 4	Leader: 2	Replicas: 2,0	Isr: 2,0
	Topic: first	Partition: 5	Leader: 0	Replicas: 0,1	Isr: 0,1
  • 删除 topic
[omm@bigdata01 bin]$ ./kafka-topics.sh --zookeeper bigdata01:2181 --delete --topic first
Topic first is marked for deletion.
Note: This will have no impact if delete.topic.enable is not set to true.

2.3 message 命令

  • 生产消息

--broker-list:指定了所使用的 broker 列表

[omm@bigdata01 bin]$ ./kafka-console-producer.sh --broker-list bigdata01:9092 --topic first
>hello
>how are you doing?
>
  • 消费消息
  1. 对于消费者,kafka中有两个设置的地方:对于老的消费者,由--zookeeper(已废弃)参数设置;对于新的消费者,由--bootstrap-server参数设置
  2. 如果使用了--zookeeper参数,那么consumer的信息将会存放在zookeeper中/consumers/[group_id]/offsets/[topic]/[broker_id-part_id],这个是查看某个group_id的某个topic的offset
  3. 如果使用了--bootstrap-server参数,那么consumer的信息将会存放在kafka之中
[omm@bigdata02 bin]$ ./kafka-console-consumer.sh --bootstrap-server bigdata02:9092 --topic first
hello
how are you doing?
  • 从头消费消息
[omm@bigdata03 bin]$ ./kafka-console-consumer.sh --bootstrap-server bigdata02:9092 --topic first
^CProcessed a total of 0 messages
[omm@bigdata03 bin]$ ./kafka-console-consumer.sh --bootstrap-server bigdata02:9092 --from-beginning --topic first
how are you doing?
hello

三、深入架构

3.1 文件存储机制

  • 落地文件
  1. topic 是逻辑上的概念,而partition 是物理上的概念,每个partition 对应于一个log 文
    件,该log 文件中存储的就是producer 生产的数据。
  2. Producer 生产的数据会被不断追加到该log 文件末端,且每条数据都有自己的offset。
  3. 消费者组中的每个消费者,都会实时记录自己消费到了哪个offset,以便出错恢复时,从上次的位置继续消费。

在这里插入图片描述

  • 消息读取规则
  1. index 和log 文件以当前segment 的第一条消息的offset 命名。
  2. .index文件存储大量的索引信息 ,.log文件存储大量的数据 ,索引文件中的元数据指向对应数据文件中 message的物理偏移地址 。

在这里插入图片描述

3.2 生产者

3.2.1 分区策略

  • 分区的原因
  1. 方便在集群中扩展 ,每个 Partition可以通过调整以适应它所在的机器,而一个 topic又可以有多个 Partition组成,因此整个集群就可以适应任意大小的数据了;
  2. 可以提高并发 ,因为可以以 Partition为单位读写了。
  • 分区的原则

我们需要将 producer 发送的数据封装成一个 ProducerRecord对象 。

在这里插入图片描述

  1. 指明 partition 的情况下,直接将指明的值直接作为 partiton 值;
  2. 没有指明 partition 值但有 key 的情况下,将 key 的 hash 值与 topic 的 partition 数进行取余得到 partition 值;
  3. 既没有 partition 值又没有 key 值的情况下,第一次调用时随机生成一个整数(后面每次调用在这个整数上自增),将这个值与 topic 可用的 partition 总数取余得到 partition 值,也就是常说的 round-robin 算法。

3.2.2 数据可靠性保证

为保证 producer 发送的数据能可靠的发送到指定的 topic,topic的每个 partition收到producer发送的数据后, 都需要向 producer发送 ack。

  • 副本数据同步策略
方案优点缺点
半数以上完成同步,就发送ack延迟低选举新的leader 时,容忍n 台节点的故障,需要2n+1 个副本
全部完成同步,才发送ack选举新的leader 时,容忍n 台节点的故障,需要n+1 个副本延迟高

Kafka 选择了第二种方案,原因如下:

  1. 同样为了容忍n 台节点的故障,第一种方案需要2n+1 个副本,而第二种方案只需要n+1个副本,而Kafka 的每个分区都有大量的数据,第一种方案会造成大量数据的冗余。
  2. 虽然第二种方案的网络延迟会比较高,但网络延迟对Kafka 的影响较小。
  • ISR
  1. Leader 维护了一个动态的in-sync replica set (ISR),意为和leader 保持同步的follower 集合。
  2. 当ISR 中的follower 完成数据的同步之后,leader 就会给follower 发送ack。
  3. 如果follower长时间未向leader 同步数据, 则该follower 将被踢出ISR , 该时间阈值由replica.lag.time.max.ms 参数设定。
  4. Leader 发生故障之后,就会从ISR 中选举新的leader。
  • acks
  1. 0:producer 不等待broker 的ack,这一操作提供了一个最低的延迟,broker 一接收到还
    没有写入磁盘就已经返回,当broker 故障时有可能丢失数据;
  2. 1:producer 等待broker 的ack,partition 的leader 落盘成功后返回ack,如果在follower同步成功之前leader 故障,那么将会丢失数据;

在这里插入图片描述

  1. -1(all):producer 等待broker 的ack,partition 的leader 和follower 全部落盘成功后才返回ack。但是如果在follower 同步完成后,broker 发送ack 之前,leader 发生故障,那么会造成数据重复。

在这里插入图片描述

  • 故障处理细节

在这里插入图片描述

故障处理只能保证副本之间的数据一致性,并不能保证数据不丢失或者不重复。

  1. follower 故障:follower 发生故障后会被临时踢出ISR,待该follower 恢复后,follower 会读取本地磁盘记录的上次的HW,并将log 文件高于HW 的部分截取掉,从HW 开始向leader 进行同步。

  2. leader 故障:leader 发生故障之后,会从ISR 中选出一个新的leader,之后其余的follower会先将各自的log文件高于HW的部分截掉,然后从新的leader同步数据。

3.2.3 Exactly Once语义

  • At Least/Most Once
  1. 将服务器的ACK级别设置为 -1,可以保证 Producer到 Server之间不会丢失数据,即 At Least Once语义 。
  2. 相对的,将服务器 ACK级别设置为 0,可以保证生产者每条消息只会被发送一次,即 At Most Once语义。
  • 问题引出
  1. At Least Once可以保证数据不丢失,但是不能保证数据不重复;相对的, At Least Once可以保证数据不重复,但是不能保证数据不丢失。
  2. 对于一些非常重要的信息,比如说交易数据,下游数据消费者要求数据既不重复也不丢失,即 Exactly Once语义。
  3. 在 0.11版本以前的 Kafka,对此是无能为力的,只能保证数据不丢失,再在下游消费者对数据做全局去重。
  4. 0.11版本的 Kafka,引入了一项重大特性:幂等性。所谓的幂等性就是指 Producer不论
    向 Server发送多少次重复数据, Server端都只会持久化一条。幂等性结合 At Least Once语义,就构成了 Kafka的 Exactly Once语义。
  • Exactly Once

要启用幂等性,只需要将Producer的参数中 enable.idompotence设置为 true即可。

  1. Kafka的幂等性实现其实就是将原来下游需要做的去重放在了数据上游。
  2. 开启幂等性的 Producer在初始化的时候会被分配一个 PID,发往同一 Partition的消息会附带 Sequence Number。
  3. 而Broker端会对 <PID, Partition, SeqNumber>做缓存,当具有相同主键的消息提交时, Broker只会持久化一条。
  4. 但是Producer重启/重连PID就会变化,同时不同的 Partition也具有不同主键,所以幂等性 无法保证跨分区跨会话 的 Exactly Once。

3.3 消费者

  • 消费方式
  1. consumer采用 pull 模式从 broker中读取数据。
  2. push 的目标是尽可能以最快速度传递消息,这样很容易造成 consumer来不及处理消息,典型的表现就是拒绝服务以及网络拥塞。
  3. pull 模式不足之处是,如果kafka 没有数据,消费者可能会陷入循环中,一直返回空数据。
  4. 针对这一点,Kafka 的消费者在消费数据时会传入一个时长参数timeout,如果当前没有数据可供消费,consumer 会等待一段时间之后再返回,这段时长即为timeout。
  • 分区分配策略

一个consumer group 中有多个consumer,一个 topic 有多个partition,所以必然会涉及到partition 的分配问题,即确定那个partition 由哪个consumer 来消费。

  1. RoundRobin

此策略将消费者组订阅的 Topics作为整体 进行轮询,假如消费者组订阅的是多个不同的 Topic,会产生消息消费错误的问题。

在这里插入图片描述

  1. Range(默认)

此策略将 单个Topic 尽量均分到消费者组中订阅的Cousumers。

在这里插入图片描述

  • offsets 的维护

consumer 需要实时记录自己消费到了哪个offset,以便故障恢复后继续消费。

Kafka 0.9 版本之前,consumer 默认将offset 保存在Zookeeper 中;从0.9 版本开始,consumer 默认将offset 保存在Kafka 一个内置的topic 中,该topic 为__consumer_offsets。

在这里插入图片描述

3.4 高效读写

  • 顺序写磁盘
  1. Kafka的 producer生产数据,要写入到 log文件中,写的过程是一直追加到文件末端,为顺序写 。
  2. 官网有数据表明,同样的磁盘,顺序写能到 600M/s,而随机写只有 100K/s。
  3. 这与磁盘的机械机构有关,顺序写之所以快,是因为其省去了 大量 磁头寻址的时间 。
  • 零复制技术

在这里插入图片描述

3.5 Zookeeper 在Kafka 中的作用

Kafka 集群中有一个broker 会被选举为Controller,负责管理集群broker 的上下线,所有topic 的分区副本分配和leader 选举等工作。

[zk: localhost:2181(CONNECTED) 16] get -s /controller
{"version":1,"brokerid":0,"timestamp":"1613693826004"}
cZxid = 0x30000005f
ctime = Fri Feb 19 08:17:06 CST 2021
mZxid = 0x30000005f
mtime = Fri Feb 19 08:17:06 CST 2021
pZxid = 0x30000005f
cversion = 0
dataVersion = 0
aclVersion = 0
ephemeralOwner = 0x100000cd0d10000
dataLength = 54
numChildren = 0
[zk: localhost:2181(CONNECTED) 17] 

Controller 的管理工作都是依赖于Zookeeper 的。

  • partition 的 leader 选举过程
    在这里插入图片描述

3.6 事务

Kafka 从0.11 版本开始引入了事务支持。事务可以保证Kafka 在Exactly Once 语义的基础上,生产和消费可以跨分区和会话,要么全部成功,要么全部失败。

  • Producer事务

Transaction ID 结合 PID (幂等性) 保证了生产者跨会话跨分区的 Exactly Once。【适用于特殊场景】

  1. 为了实现跨分区跨会话的事务,需要引入一个全局唯一的Transaction ID,并将 Producer获得的 PID和 Transaction ID绑定。
  2. 当 Producer重启后就可以通过正在进行的 Transaction ID获得原来的 PID。
  3. 为了管理Transaction Kafka引入了一个新的组件 Transaction Coordinator。
  4. Producer就是通过和 Transaction Coordinator交互获得 Transaction ID对应的任务状态。
  5. Transaction Coordinator还负责将事务所有写入 Kafka的一个内部 Topic,这样即使整个服务重启,由于事务状态得到保存,进行中的事务状态可以得到恢复,从而继续进行。
  • Consumer事务
  1. 上述事务机制主要是从Producer方面考虑,对于 Consumer而言,事务的保证就会相对较弱,尤其时无法保证 Commit的信息被精确消费。
  2. 这是由于 Consumer可以通过 offset访问任意信息,而且不同的 Segment File生命周期不同,同一事务的消息可能会出现重启后被删除的情况。

四、Kafka API

4.1 生产者

4.1.1 消息发送流程

  1. Kafka的 Producer发送消息采用的是 异步发送 的方式。
  2. 在消息发送的过程中,涉及到了两个线程 main线程和 Sender线程 ,以及 一个线程共享变量 RecordAccumulator。
  3. main线程将消息发送给 RecordAccumulator Sender线程不断从RecordAccumulator中拉取消息发送到 Kafka broker。

batch.size:只有数据积累到batch.size 之后,sender 才会发送数据。

linger.ms:如果数据迟迟未达到batch.size,sender 等待linger.time 之后就会发送数据。

在这里插入图片描述

4.1.2 KafkaProducer

  1. 引入依赖
<dependency>
    <groupId>org.springframework.kafka</groupId>
    <artifactId>spring-kafka</artifactId>
</dependency>
  1. 编写实现类

可配置项及默认值: http://kafka.apache.org/26/documentation.html#producerconfigs

package com.simwor.kafka;

import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;

import java.util.Properties;

public class KafkaProducerTest {

    public static void main(String[] args) {
        Properties props = new Properties();
        props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "bigdata01:9092,bigdata02:9092,bigdata03:9092");
        props.put(ProducerConfig.ACKS_CONFIG, "all");
        props.put(ProducerConfig.RETRIES_CONFIG, 1);
        props.put(ProducerConfig.BATCH_SIZE_CONFIG, 16384);
        props.put(ProducerConfig.LINGER_MS_CONFIG, 1);
        props.put(ProducerConfig.BUFFER_MEMORY_CONFIG, 33554432);
        props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");
        props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");

        Producer<String, String> producer = new KafkaProducer<>(props);
        for (int i = 0; i < 10; i++)
            producer.send(new ProducerRecord<>("first", Integer.toString(i)));

        producer.close();
    }

}
  1. 运行验证
[omm@bigdata01 bin]$ ./kafka-console-consumer.sh --bootstrap-server bigdata02:9092 --topic first
0
1
2
3
4
5
6
7
8
9

4.2 消费者

package com.simwor.kafka;

import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;

import java.time.Duration;
import java.util.Arrays;
import java.util.Properties;

public class KafkaConsumerTest {
    public static void main(String[] args) {
        Properties props = new Properties();
        props.put("bootstrap.servers", "bigdata01:9092,bigdata02:9092,bigdata03:9092");
        props.put("group.id", "test");
        props.put("enable.auto.commit", "true");
        props.put("auto.commit.interval.ms", "1000");
        props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
        props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");

        KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
        consumer.subscribe(Arrays.asList("first"));

        while (true) {
            ConsumerRecords<String, String> records = consumer.poll(Duration.ofSeconds(1));
            for (ConsumerRecord<String, String> record : records)
                System.out.printf("offset = %d, key = %s, value= %s%n", record.offset(), record.key(), record.value());
        }
    }

}

4.3 拦截器

4.3.1 原理

  • 简介
  1. Producer拦截器 (interceptor)主要用于实现 clients端的定制化控制逻辑。
  2. 对于producer而言, interceptor使得用户在消息发送前以及 producer回调逻辑前有机会对消息做一些定制化需求,比如 修改消息 等。
  3. 同时, producer允许用户指定多个 interceptor按序作用于同一条消息从而形成一个拦截链 (interceptor chain)。
  4. Intercetpor的实现接口是 org.apache.kafka.clients.producer.ProducerInterceptor
  • 接口方法
  1. configure(configs):获取配置信息 和 初始化数据时调用 。
  2. onSend(ProducerRecord):该方法封装进KafkaProducer.send方法中,即它运行在用户主线程中。Producer确保在消息被序列化以及计算分区前调用该方法。用户可以在该方法中对消息做任何操作,但最好保证不要修改消息所属的 topic和分区, 否则会影响目标分区的计算 。
  3. onAcknowledgement(RecordMetadata, Exception):该方法会在消息从 RecordAccumulator成功 发送到 Kafka Broker之后,或者在发送过程中失败时调用。 并且通常都是在 producer回调逻辑触发之前。 onAcknowledgement运行在producer的 IO线程中,因此不要在该方法中放入很重的逻辑,否则会拖慢 producer的消息发送效率 。
  4. close:关闭interceptor,主要用于执行一些资源清理工作。如前所述,interceptor可能被运行在多个线程中,因此在具体实现时用户需要自行确保线程安全。另外 倘若指定了多个 interceptor,则 producer将按照指定顺序调用它们 ,并仅仅是捕获每个 interceptor可能抛出的异常记录到错误日志中而非在向上传递。这在使用过程中要特别留意。

4.3.2 自定义

  1. 代码
package com.simwor.kafka;

import org.apache.kafka.clients.producer.*;

import java.util.Collections;
import java.util.Map;
import java.util.Properties;

public class KafkaInterceptorTest implements ProducerInterceptor<String, String> {

    public static void main(String[] args) {
        Properties props = new Properties();
        props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "bigdata01:9092,bigdata02:9092,bigdata03:9092");
        props.put(ProducerConfig.ACKS_CONFIG, "all");
        props.put(ProducerConfig.RETRIES_CONFIG, 1);
        props.put(ProducerConfig.BATCH_SIZE_CONFIG, 16384);
        props.put(ProducerConfig.LINGER_MS_CONFIG, 1);
        props.put(ProducerConfig.BUFFER_MEMORY_CONFIG, 33554432);
        props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");
        props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");
        //interceptors
        props.put(ProducerConfig.INTERCEPTOR_CLASSES_CONFIG, Collections.singletonList("com.simwor.kafka.KafkaInterceptorTest"));

        Producer<String, String> producer = new KafkaProducer<>(props);
        for (int i = 0; i < 10; i++)
            producer.send(new ProducerRecord<>("first", Integer.toString(i)));

        producer.close();
    }

    @Override
    public ProducerRecord<String, String> onSend(ProducerRecord<String, String> record) {
        return new ProducerRecord<>(record.topic(), record.partition(),
                record.timestamp(), record.key(), System.currentTimeMillis() + ", " + record.value());
    }

    @Override public void onAcknowledgement(RecordMetadata metadata, Exception exception) { }
    @Override public void close() { }
    @Override public void configure(Map<String, ?> configs) { }
}
  1. 运行验证
[omm@bigdata01 ~]$ cd /opt/module/kafka/bin/
[omm@bigdata01 bin]$ ./kafka-console-consumer.sh --bootstrap-server bigdata01:9092 --topic first
1613871255570, 0
1613871256049, 1
1613871256049, 2
1613871256049, 3
1613871256049, 4
1613871256049, 5
1613871256050, 6
1613871256050, 7
1613871256050, 8
1613871256050, 9

五、总结

  1. Kafka 的幂等性保证了同分区但会话的ExactlyOnce;
  2. Kafka 的事务+幂等性保证了跨分区多会话的ExactlyOnce;
  3. Kafka 的LEO和HW保证副本之间的数据一致性;
  4. .index + .log 保证快速索引到消息且开始顺序读取消息。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值