222. 完全二叉树的节点个数

222. 完全二叉树的节点个数

给你一棵 完全二叉树 的根节点 root ,求出该树的节点个数。

完全二叉树 的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层,则该层包含 1~ 2h 个节点。

示例 1:

img

输入:root = [1,2,3,4,5,6]
输出:6

示例 2:

输入:root = []
输出:0

示例 3:

输入:root = [1]
输出:1

提示:

  • 树中节点的数目范围是[0, 5 * 104]
  • 0 <= Node.val <= 5 * 104
  • 题目数据保证输入的树是 完全二叉树
    满二叉树的节点数目为2^h-1
    想要利用完全二叉树的性质那么对于一个节点来说的话会出现两种不同的情况
    情况1.左子树深度=右子树深度那么左子树一定为满二叉树,这时计算左子树2^leftdepth-1+右子树深度
    情况2.左子树深度!=右子树深度 那么右子树一定为满二叉树,这时计算右子树2^rightdepth-1+左子树深度

class Solution {
    public int countNodes(TreeNode root) {
        if(root==null){
            return 0;
        }
        int leftdepth = getDepth(root.left);
        int rightdepth = getDepth(root.right);
        if(leftdepth==rightdepth){
            // return Math.pow(2,leftdepth)-1+1+countNodes(root.right);减1加1省略了
            return (int)Math.pow(2,leftdepth)+countNodes(root.right);
        }else{
            return (int)Math.pow(2,rightdepth)+countNodes(root.left);//同上
        }


    }
    private int getDepth(TreeNode node){
        int depth=0;
        while(node!=null){//需要配合上面传的参数
            node=node.left;
            depth++;
        }
        return depth;
    }
}

时间复杂度:O(logn * logn)
因为每层都是只判断一个节点它的左右子树高度相等与否,相等不相等都缩小它的规模(砍掉了另一半的子树)所以它的轨迹仍是一个树从上到下的一条路(logn)。,对每一个需要被判断节点要得到它的高度(logn) =》logn * logn
空间复杂度:O(logn)//递归栈
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值