SESV:通过预测和纠错实现精确的医学图像分割

本文提出SESV框架,通过预测和纠正现有DCNN的分割误差,提高医学图像分割准确性。方法包括误差引导的重新分割和细化验证,实现在CRAG、ISIC和IDRiD数据集上的显著性能提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

SESV: Accurate Medical Image Segmentation by Predicting and Correcting Errors

SESV:通过预测和纠错实现精确的医学图像分割

286 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 40, NO. 1, JANUARY 2021

背景

医学图像分割是计算机辅助诊断中的一项重要任务。尽管深度卷积神经网络普遍存在并取得了成功,但仍需要改进,以产生足够准确和稳健的分割结果供临床使用。在本文中,我们提出了一种新的通用框架,称为分割有效性分割验证(SESV),以提高现有DCNN在医学图像分割中的准确性,而不是设计更准确的分割模型。我们的想法是预测现有模型产生的分割误差,然后进行校正。由于预测分割误差具有挑战性,我们设计了两种方法来容忍误差预测中的误差。首先,我们不使用预测的分割误差图来直接校正分割掩模,而是只将误差图视为指示容易发生分割误差的位置的先验,然后将误差图与图像和分割掩模连接起来,作为重新分割网络的输入。其次,我们引入了一个验证网络,以逐个区域地确定是接受还是拒绝重新分割网络产生的细化掩码。在CRAG、ISIC和IDRiD数据集上的实验结果表明,使用我们的SESV框架可以显著提高DeepLabv3+的准确性,并在腺细胞、皮肤病变和视网膜微动脉瘤的分割中实现高级性能。当分别使用PSPNet、U-Net和FPN作为分割网络时,也可以得出一致的结论。因此,我们的SESV框架能够提高不同DCNN在不同医学图像分割任务中的准确性

贡献<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值