LRU Cache LRU缓存机制
运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制。它应该支持以下操作: 获取数据 get 和 写入数据 put 。
- 获取数据 get(key) - 如果密钥 (key) 存在于缓存中,则获取密钥的值(总是正数),否则返回 -1。
- 写入数据 put(key, value) -如果密钥不存在,则写入其数据值。当缓存容量达到上限时,它应该在写入新数据之前删除最近最少使用的数据值,从而为新的数据值留出空间。
你是否可以在 O(1) 时间复杂度内完成这两种操作?
示例:
LRUCache cache = new LRUCache( 2 /* 缓存容量 */ );
cache.put(1, 1);
cache.put(2, 2);
cache.get(1); // 返回 1
cache.put(3, 3); // 该操作会使得密钥 2 作废
cache.get(2); // 返回 -1 (未找到)
cache.put(4, 4); // 该操作会使得密钥 1 作废
cache.get(1); // 返回 -1 (未找到)
cache.get(3); // 返回 3
cache.get(4); // 返回 4
方法一:哈希表+双向链表
关于splice的使用方法参考
l.splice(l.begin(), l, it->second);
将l中的由迭代器it->second指向的元素移到l.begin()处。也即将使用过的元素移到开头。
class LRUCache{
public:
LRUCache(int capacity) {
cap = capacity;
}
int get(int key) {
//
auto it = m.find(key);
if (it == m.end()) return -1;
l.splice(l.begin(), l, it->second);
return it->second->second;
}
void put(int key, int value) {
auto it = m.find(key);
//若出现过元素,则擦除该元素
if (it != m.end()) l.erase(it->second);
//元素放置到开头
l.push_front(make_pair(key, value));
m[key] = l.begin();
//当达到缓存容量将末尾的元素释放
if (m.size() > cap) {
int k = l.rbegin()->first;
l.pop_back();
m.erase(k);
}
}
private:
int cap;
//双向链表:装着 (key, value) 元组
list<pair<int, int>> l;
//哈希表:key 映射到 (key, value) 在 cache 中的位置
unordered_map<int, list<pair<int, int>>::iterator> m;
};