Leetcode: 146. LRU Cache LRU缓存机制

这篇博客介绍了LRU Cache的设计和实现,包括在O(1)时间复杂度内完成get和put操作的方法,特别提到了使用哈希表和双向链表的组合策略,并讲解了如何通过迭代器更新双向链表以实现最近最少使用的数据值删除。
摘要由CSDN通过智能技术生成

LRU Cache LRU缓存机制

运用你所掌握的数据结构,设计和实现一个 LRU (最近最少使用) 缓存机制。它应该支持以下操作: 获取数据 get 和 写入数据 put 。

  • 获取数据 get(key) - 如果密钥 (key) 存在于缓存中,则获取密钥的值(总是正数),否则返回 -1。
  • 写入数据 put(key, value) -如果密钥不存在,则写入其数据值。当缓存容量达到上限时,它应该在写入新数据之前删除最近最少使用的数据值,从而为新的数据值留出空间。

你是否可以在 O(1) 时间复杂度内完成这两种操作?


示例:

LRUCache cache = new LRUCache( 2 /* 缓存容量 */ );

cache.put(1, 1);
cache.put(2, 2);
cache.get(1);       // 返回  1
cache.put(3, 3);    // 该操作会使得密钥 2 作废
cache.get(2);       // 返回 -1 (未找到)
cache.put(4, 4);    // 该操作会使得密钥 1 作废
cache.get(1);       // 返回 -1 (未找到)
cache.get(3);       // 返回  3
cache.get(4);       // 返回  4

方法一:哈希表+双向链表
关于splice的使用方法参考
l.splice(l.begin(), l, it->second);
将l中的由迭代器it->second指向的元素移到l.begin()处。也即将使用过的元素移到开头。

class LRUCache{
public:
    LRUCache(int capacity) {
        cap = capacity;
    }
    
    int get(int key) {
    //
        auto it = m.find(key);
        if (it == m.end()) return -1;
        l.splice(l.begin(), l, it->second);
        return it->second->second;
    }
    
    void put(int key, int value) {
        auto it = m.find(key);
        //若出现过元素,则擦除该元素
        if (it != m.end()) l.erase(it->second);
        //元素放置到开头
        l.push_front(make_pair(key, value));
        m[key] = l.begin();
        //当达到缓存容量将末尾的元素释放
        if (m.size() > cap) {
            int k = l.rbegin()->first;
            l.pop_back();
            m.erase(k);
        }
    }
    
private:
    int cap;
    //双向链表:装着 (key, value) 元组
    list<pair<int, int>> l;
    //哈希表:key 映射到 (key, value) 在 cache 中的位置
    unordered_map<int, list<pair<int, int>>::iterator> m;
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值