Python中曲率与弯曲的转换_曲率 曲率半径

本文探讨了如何在Python中描述平面上光滑曲线的弯曲程度,通过密切圆的概念来定义曲率半径,并介绍了曲率的计算方法。随着曲线长度趋于0,密切圆能唯一确定,曲率半径的倒数即为曲率。文章还提到了一元函数的微分和高阶导数在曲率计算中的应用。
摘要由CSDN通过智能技术生成

(建议阅读原文)预备知识 切线


1我们来看一个平面上的一个光滑曲线(即处处存在切线), 我们如何描述它某点处的弯曲程度呢? 一种常用方法是在这点附近取曲线的一小段, 然后做一个尽量与它吻合的圆, 当这小段的长度趋近于 0 时, 这个圆可以唯一确定. 我们把这个圆叫做密切圆(osculating circle), 把密切圆的半径叫做曲线在该点的曲率半径(radius of curvature), 曲率半径的倒数叫做曲率(curvature)
   我们先来看一个半径为

的圆的一小段圆弧, 令其长度为
. 作这段圆弧两端的切线, 令它们的夹角为
, 那么显然满足
. 同理, 对于任意光滑曲线上长度为
的一段, 我们也可以做相同的处理, 但需要令

曲率的具体的计算公式取决于使用什么方式定义曲线, 最常见描述方式就是在直角坐标系中通过函数
来定义, 点
处的曲率半径为(
分别表示导数和二阶导数)

如果通过极坐标系函数
定义, 则点
处的曲率半径为
直角坐标系的推导

预备知识 高阶导数, 一元函数的微分


   平面上曲线的最常见描述方式就是通过定义函数

. 我们可以通过导数计算曲线上某点切线关于
轴的夹角

曲线长度的微分为

其中

为了得到
, 我们对式 4 两边做微分得

所以曲率半径为
极坐标系的推导


   极坐标系中, 同样可以用函数

描述曲线. 令


长度微分为

微分


注意切线方向的微分是
. 所以

把式 1 和式 13 代入, 再使用式 10 消去

1. 参考 Wikipedia 相关页面

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值