Python中曲率与弯曲的转换_高斯绝妙定理——从高斯曲率说起

本文探讨了微分几何中的高斯曲率,介绍了曲面的基本形式、高斯曲率的定义及其在曲面几何中的重要性。通过高斯绝妙定理,阐述了曲面的内蕴性质,指出曲面的高斯曲率由第一基本形式完全决定,展示了高斯曲率在描述曲面形状和度量偏离标准度量程度上的作用。
摘要由CSDN通过智能技术生成

从数学发展的历史来看,微分几何几乎和微积分同时诞生,甚至可以说,微分几何还要早一些,因为在早期的微积分中,还存在很多来自几何的观念。我们都知道,古典的微分几何在高斯这里发展到了高峰,“内蕴几何”自此被提出此后。我们对微分几何有了全新的认识,被研究的几何对象不再被看作通常的欧式空间的一部分,而是它本身就是一个空间。高斯的“内蕴几何”后来被黎曼(毫无疑问,黎曼是高斯最杰出的学生)推广到任意维数的黎曼流形上,黎曼几何也就此诞生。而在这一微分几何发展过程中,“高斯绝妙定理”起到了关键的启示作用。那么,“高斯绝妙定理”到底是什么?它到底奇妙在哪里?

9341c11d4963987fddf5d9c065fdd6f2.png

曲面基本形式

首先,我们考虑三维空间中的参数曲面,它可以用两个参数表示出来:

563590945878c8a5a77482ad02d22a21.png

为了研究的简便,我们往往要假设坐标函数是参数的高次(一般大于二次)可微函数,而且沿两个参数方向的切向量rurv(也即

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值