matlab 柯西黎曼方程,解析函数及柯西黎曼方程.ppt

解析函数及柯西黎曼方程

1 复变函数的导数和微分 导数的分析定义: 2 解析函数的概念与求导法则 注 四则运算法则 复合函数求导法则 反函数求导法则 解析函数的性质 P50 例2.3-2.5 3 Cauchy-Riemann条件: 定理2.2的证明(必要性): 定理2.2的证明(充分性): 复变函数的解析条件 注: 和数学分析中结论不同,此定理表明解析函数(可导函数)的实部和虚部不是完全独立的,它们是柯西-黎曼方程的一组解; 柯西-黎曼条件是复变函数解析的必要条件而非充分条件(见反例); 解析函数的导数有更简洁的形式: 反例: 例 5 * * * * 第一节 解析函数和柯西-黎曼方程 1、复变函数的导数和微分 2、解析函数及其简单性质 第二章 解析函数 3、柯西-黎曼方程 容易证明: 可导 可微 ; 可导 连续。 应该注意:上述定义中 的方式是任意的。 例1 求 f (z) = z2 的导数。 解: 因为 所以f '(z) = 2z . 复变函数的导数具有与实函数同样的求导法则 。 * 解 例2 问 f (z) = x +2yi 是否可导? * 讨论 的可导性。 练习 注1、“可微”有时也可以称为“单演”,而“解析”有时也称为“单值解析”、“全纯”、“正则”等; 注2、解析性与可导性的关系:在一个点的可导性为一个局部概念,而解析性是一个整体概念; 注3、函数在一点解析,是指在这个点的某个邻域内可导,因此在这个点可导;反之,在一个点的可导不能得到在这个点解析; 函数在一点解析 在该点可导。 反之不一定成立。 在区域内: 否则称为奇点 。 * 例3 解 由本节例1和例2和练习知: 1、?两个解析函数和差积商后仍为解析函数; 2、两个解析函数的复合函数仍为解析函数; 3、 一个解析函数不可能仅在一个点或一条曲线上解析;所有解析点的集合必为开集。 * 练习 解 例4 讨论下列函数的可导性和解析性:

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值