TensorFlow Lite 开发手册(1)——TensorFlow 2.0安装

TensorFlow Lite 开发手册(1)——TensorFlow 2.0安装

(一) TensorFlow 2.0安装

创建虚拟环境:

conda create --name py36-tf20 python=3.6
conda activate py36-tf20

目前conda源尚已维护至2.0版本,可以使用conda命令安装:

# 安装CPU版本
conda install tensorflow

# 安装GPU版本,CUDA支持请查看TensoFlow官网
conda install tensorflow-gpu

(二) TensorFlow 2.0 新特性简介

  • API Cleanup
    移除了许多库,如tf.app,tf.logging,tf.flags等,将原有的函数库整合进了tf.keras,如tf.layers->tf.keras.layers

  • Eager execution
    在2.0中,动态图机制成为默认机制,不再需要用户手动创建会话,也不需要使用 sess.run() 来指定输入输出的张量。

  • No more globals
    不再依赖隐式全局命名空间,即不再依赖tf.Variable()来声明变量,而是采用默认机制:“ Keep track of your variables!”,如果不再追溯某个tf.Variable,其就会被回收。

  • Functions, not sessions(个人认为是很重要、也很厉害的一点)
    在2.0中提供了名为 @tf.function() 的装饰器,它可以对普通的Python函数进行标记以进行JIT编译,然后TensorFlow就可以将其作为单一的计算图来运行,这使得该函数可以直接被优化作为模型导出。并且为了帮助用户在添加**@tf.function时避免重写代码,AutoGraph将python中的一些函数转换为其TensorFlow**包含的等价函数:

  for/while -> tf.while_loop (break and continue are supported)
  if -> tf.cond
  for _ in dataset -> dataset.reduce
  • 个人补充
    在2.0中,Keras被全面整合,Google也推荐大家使用tf.keras更高效构建模型,并且使用tf.data构建数据流(有关tf.data使用的流程可以参照我的博客https://blog.csdn.net/weixin_42499236/article/category/8331677),而tf.keras保存的模型也可以直接被转换为TensorFlow Lite模型,所以还是用Keras比较好。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Friedrich Yuan

拒绝白嫖,从我做起!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值