matlab新手信号分析ppt,《小波分析信号处理(matlab)》.ppt

小波基础 线性代数(高等代数); 数字信号处理; 泛函分析初步; Matlab 数字图像处理; Normed space(赋范空间与范数) Examples Hilbert Space(内积与希尔伯特空间) Orthogonality Orthogonal system(正交系) Basis(基) Direct sum(直和) 函数——映射f:数集X——数集Y。 例:y=f(x) 泛函——映射J:抽象集X——数集Y。 例:y=J[f(x)]=F(x)+c 算子——映射A:抽象集X——抽象集Y。 例:y=Ax (x,y都是向量) 电脑不能处理无限的,连续的数据。 例如:无穷大,趋于0,连续函数 电脑只能处理离散的,有限长的数据序列。 例如:t=0:0.001:1024 数据长度有限(不是无穷大) 数据间隔有限(不是无穷小)(离散) 信号——时间域:反映不同时间点的情况 频率域:F变换系数 空间域:传播距离,对应深度等 同一点不同时刻的振动——y=sin(t) t——时间 y——幅度 离散——是对时间进行间隔采样(x轴离散) 量化——就是对幅度也离散(y轴离散) 数字信号——只有二者都离散后,才可称为~。 (才可以在电脑上处理) 采样点间隔:一般是等时间间隔采样(ts) (等步长) 采样点数:数出一共取了多少个样点(N点) 采样总长度=离散总长度=(点数-1)x间隔 例如:t=1:0.01:1024 若ts单位是秒, 则总时间t=(1024-1)x0.01=10.23(s) 采样频率:fs=1/ts=100(Hz) 信号(周期的)本身频率——y=sin(t) 信号周期T=2pi/1 信号频率f=1/T=1/2pi 采样周期(间隔)——0:0.01:1024 采样周期ts=0.01 采样频率fs=1/ts=1/0.01=100 时间采样频率是频谱信号的信号周期 频率离散间隔对应时间信号的信号同期 利用 FFT 进行频谱分析 利用FFT进行频谱分析的基本方法 离散时间、连续频率—序列的傅里叶变换 时域的离散化造成频域的周期延拓,而时域的非周期对应于频域的连续 几个常用基本概念 小波分解和小波基 小波基表示发生的时间和频率 “时频局域性” 图解:Fourier变换的基(上)小波变换基(中) 和时间采样基(下)的比较 小波原始信号分解过程: 原始信号s可分解成小波近似 a 与小波细节d 之和。 s = a+d 小波系数 w = [ wa , wd ] 的分量,乘以 基函数,形成小波分解: 小波近似系数wa ×基函数A=近似分解 a ---平均 小波细节系数wd ×基函数D=细节分解 d---变化 小波分析在一维信号处理中的应用 小波变换就是将 “ 原始信号 s ” 变换 成 “ 小波 系数 w ” ,w=[wa , wd] 包括近似(approximation)系数wa 与细节(detail)系数wd 近似系数wa---平均成分(低频) 细节系数wd---变化成分(高频) 离散小波变换公式 信号 s 有M个样本,J 级小波变换: 由尺度函数得到正交小波基 * 信号处理 Y=kx与y=kx+b Linear space(线性空间) 绝对值=模=长度=距离=范数 线性无关向量 线性表出 线性空间 空间内元素满足线性运算 线性赋范空间 巴拿赫空间 希尔伯特空间 欧氏空间 酉空间 L2空间 线性+范数+完备 线性+范数+完备+内积 线性+范数 线性空间 2. f(t) 的频谱(线频谱) f(t)分解为傅氏级数后包含哪些频率分量和各分量所占“比重”用长度与各次谐波振幅大小相对应的线段进行表示,并按频率的高低把它们依次排列起来所得到的图形,称为 f(t) 的频谱。 幅度频谱:表示出各谐波分量的振幅。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值