龙源期刊网
http://www.qikan.com.cn
基于
Almon
变换的多项式阶数选择
作者:王月虎
来源:《商情》
2011
年第
11
期
[
摘要
]
在分布滞后模型中,为尽量避免多重共线性
,
常用
Almon
变换,这样对
OLS
估计量
的解释才有意义。本文研究了进行
Alomn
变换时多项式的阶数选择问题。
[
关键词
]
分布滞后模型
Alomn
变换
阶数选择
一、阿尔蒙(A
lmon
)多项式法
1.
主要思想:对有限滞后期模型,通过阿尔蒙变换,定义新变量,以减少解释变量个数,
然后用
OLS
法估计参数。
2.
主要步骤:
步骤一:阿尔蒙变换
步骤二:模型的
OLS
估计
3.
小结
在上面的过程中我们需要先验地决定多项式的阶数
m
,为了避免共线性通常取值
2
或
3
。
那么什么时候取
m=2
什么时候取
m=3
呢?
二、定阶数问题
1.
准备知识
综上所述,三次多项式的图像比二次多项式的图像更弯曲,后者适用于滞后因子分布对称
的数据,前者适用滞后因子分布不对称的数据。
2.
实例
设想某人依次上幼儿园、小学、初中、高中、大学、研究生到
30
岁为止。易见
30
岁时此
人的综合素质受它前期所有教育的影响,我们认为启蒙教育对此人的综合素质影响最大,毕竟
良好的开端是成功的一半。