分布式训练---模型并行(流水线并行+张量并行)--原理

本文探讨了分布式流水线并行,特别是Gpipe方法,如何通过微批处理和重计算策略来提高GPU效率及降低显存消耗。文章还提到了张量并行的差异以及大模型分布式训练中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0 引言

  分布式流水线并行,同样只是作为个人学习总结记录,错误请指出。

1 对比

   流水线并行和张量并行都可以看作是模型并行的一种,只是对模型切分的维度不同,流水线并行可以看作是层间并行,将模型不同的层放到不同的GPU上,张量并行看作是层内并行,是对层内具体的矩阵运算进行拆分。
在这里插入图片描述

2 流水线并行-Gpipe

   假设模型太大,有T1、T2、T3、T4四层,一张GPU上放不下,流水线并行就是将T1、T2放到GPU0上,T3、T4放到GPU1上,如下图所示。
在这里插入图片描述
   通过流水线并行能够将大模型切分到更多的GPU上,但是缺点也是显而易见,在计算过程中,必须顺序执行,后面的计算过程依赖于前面的计算结果,导致GPU效率不高,如下图有很多空白的地方。假设将模型放到四个GPU上,横轴为时间线,可以看出同一时间只有一个GPU在运行,F表示前向过程,B表示后向过程。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

她的我

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值