分布式训练-模型并行(张量并行)-- 原理

本文详细探讨了张量并行在Transformer模型中的应用,特别是MLP层和Attention层的并行策略,以及如何通过列切割和行切割进行GPU拆分,同时介绍了AllReduce在模型训练中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0 引言

  本文介绍张量并行原理,只作为学习总结记录,错误请指出。

1 原理

   流水线并行和张量并行都可以看作是模型并行的一种,只是对模型切分的维度不同,流水线并行可以看作是层间并行,将模型不同的层放到不同的GPU上,张量并行看作是层内并行,是对层内具体的矩阵运算进行拆分。
在这里插入图片描述

1.1 拆分方式

   x为输入,A为权重参数,y为输出,按列拆分是保持x不变,将A按列拆分,分别计算后再拼接在一起。按行拆分是将x按列拆分,A按行拆分,分别计算后,再相加得到最终的输出。
在这里插入图片描述
  在两张GPU上的具体的并行操作如图所示,思想就是将进行运算的矩阵拆分到不同的GPU上,然后将每个GPU上的运算结果进行汇总(GPU之间通信)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

她的我

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值