ML LogisticRegression 尚不支持多项分类,但MLLib NaiveBayes 和 LogisticRegressionWithLBFGS 都支持它 . 在第一种情况下,它应该默认工作:
import org.apache.spark.mllib.classification.NaiveBayes
val nbModel = new NaiveBayes()
.setModelType("multinomial") // This is default value
.run(train)
但是对于逻辑回归,你应该提供一些类:
import org.apache.spark.mllib.classification.LogisticRegressionWithLBFGS
val model = new LogisticRegressionWithLBFGS()
.setNumClasses(n) // Set number of classes
.run(trainingData)
关于预处理步骤,这是一个相当广泛的主题,如果没有访问您的数据,很难给您一个有意义的建议,所以您在下面找到的所有内容只是一个疯狂的猜测:
据我所知,您使用维基数据进行培训和推文进行测试 . 如果这是真的,一般来说这是一个坏主意 . 您可以预期两组使用显着不同的词汇,语法和拼写
简单的正则表达式标记符可以在标准化文本上很好地执行,但根据我的经验,它不会像推文那样在非正式文本上运行良好
HashingTF 可以是获得基线模型的好方法,但它是极其简化的方法,特别是如果您不应用任何过滤步骤 . 如果您决定使用它,至少应增加功能数量或使用默认值(2 ^ 20)
EDIT (用IDF为朴素贝叶斯准备数据)
使用ML管道:
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.linalg.Vector
import org.apache.spark.ml.feature.IDF
import org.apache.spark.sql.Row
val tokenizer = ???
val hashingTF = new HashingTF()
.setNumFeatures(1000)
.setInputCol(tokenizer.getOutputCol)
.setOutputCol("rawFeatures")
val idf = new IDF()
.setInputCol(hashingTF.getOutputCol)
.setOutputCol("features")
val pipeline = new Pipeline().setStages(Array(tokenizer, hashingTF, idf))
val model = pipeline.fit(labeledData)
model
.transform(labeledData)
.select($"label", $"features")
.map{case Row(label: Double, features: Vector) => LabeledPoint(label, features)}
使用MLlib变换器:
import org.apache.spark.mllib.feature.HashingTF
import org.apache.spark.mllib.linalg.Vector
import org.apache.spark.mllib.feature.{IDF, IDFModel}
val labeledData = wikiData.map(x =>
LabeledData(x.category, x.text, categoryMap.get(x.category).getOrElse(0.0)))
val p = "\\W+".r
val raw = labeledData.map{
case LabeledData(_, text, label) => (label, p.split(text))}
val hashingTF: org.apache.spark.mllib.feature.HashingTF = new HashingTF(1000)
val tf = raw.map{case (label, text) => (label, hashingTF.transform(text))}
val idf: org.apache.spark.mllib.feature.IDFModel = new IDF().fit(tf.map(_._2))
tf.map{
case (label, rawFeatures) => LabeledPoint(label, idf.transform(rawFeatures))}
注意:由于变换器需要JVM访问,因此MLlib版本在PySpark中不起作用 . 如果你更喜欢Python,你必须split data transform and zip .
EDIT (为ML算法准备数据):
虽然下面的代码看起来有点乍一看
val categoryMap = wikiData
.map(x=>x.category)
.distinct
.zipWithIndex
.mapValues(x=>x.toDouble/1000)
.collectAsMap
val labeledData = wikiData.map(x=>LabeledData(
x.category, x.text, categoryMap.get(x.category).getOrElse(0.0))).toDF
它不会为 ML 算法生成有效标签 .
首先 ML 期望标签在(0.0,1.0,...,n.0)中,其中n是类的数量 . 如果你的示例管道中有一个类得到标签0.001,你将得到如下错误:
ERROR LogisticRegression:分类标签应在{0到0中找到1个无效标签 .
显而易见的解决方案是在生成映射时避免除法
.mapValues(x=>x.toDouble)
虽然它适用于 LogisticRegression 其他 ML 算法仍然会失败 . 例如 RandomForestClassifier 你会得到
给RandomForestClassifier输入了无效的标签列标签,没有指定的类数 . 请参见StringIndexer .
有趣的是, RandomForestClassifier 的ML版本与 MLlib 版本不同,它没有提供设置多个类的方法 . 事实证明,它希望在 DataFrame 列上设置特殊属性 . 最简单的方法是使用错误消息中提到的 StringIndexer :
import org.apache.spark.ml.feature.StringIndexer
val indexer = new StringIndexer()
.setInputCol("category")
.setOutputCol("label")
val pipeline = new Pipeline()
.setStages(Array(indexer, tokenizer, hashingTF, idf, lr))
val model = pipeline.fit(wikiData.toDF)