背景简介
在处理原始数据时,经常会遇到各种数据格式问题。特别是在使用SAS进行数据处理时,对于自由格式数据的理解和掌握尤为重要。本章详细介绍了如何在自由格式下处理字符值截断问题、如何通过 LENGTH 语句为字符变量定义长度,以及如何使用 INFILE 语句的 DLM= 选项和 DSD 选项来处理包含非空格分隔符和缺失值的原始数据。
字符值截断问题与解决方法
当我们在读取原始数据文件时,如果字符变量的值超过了预定长度,程序默认会将它们截断。例如,一个包含城市名称的字段,如果超过8个字符长度,就会被截断。为了解决这个问题,我们可以使用 LENGTH 语句在 DATA 步骤中提前定义字符变量的长度。如下示例:
data sasuser.growth;
infile citydata;
length City $ 12;
input City $ Pop70 Pop80;
run;
通过这样的设置,我们可以确保即使是像“PHILADELPHIA”这样长度超过8的字符值也能被完整读取,而不会丢失信息。
使用非空格分隔符和缺失值
原始数据文件中的字段通常由空格分隔,但有时也会使用其他字符如逗号来分隔。在这些情况下,我们可以通过 INFILE 语句中的 DLM= 选项来指定分隔符。例如:
data sasuser.creditsurvey;
infile cccomma dlm=',';
input Gender $ Age Bankcard FreqBank Deptcard FreqDept;
run;
此外,当字段内包含分隔符时,可以使用 DSD 选项,该选项将双引号内的分隔符视为普通字符,而不是字段分隔符。
处理记录中缺失值
在处理原始数据时,有时某些字段可能未被填写,即存在缺失值。SAS 提供了 MISSOVER 选项来处理记录末尾的缺失值,而 DSD 选项则用于处理记录开头或中间的缺失值。例如,如果我们希望在遇到缺失值时,SAS 不会跳转到下一条记录继续读取,而是在当前记录中将缺失值设为缺失,我们可以使用 MISSOVER 选项。
data sasuser.creditsurvey;
infile creditcr missover;
input Gender $ Age Bankcard FreqBank Deptcard FreqDept;
run;
总结与启发
通过本章的学习,我们了解了在自由格式下处理原始数据时如何处理字符值截断、非空格分隔符以及缺失值。这些技巧能够帮助我们在实际工作中更有效地处理各种复杂的数据格式,确保数据的完整性和准确性。掌握了这些方法后,我们可以更加自信地面对各种数据输入输出的挑战,提高工作效率和数据处理质量。
关键词
- 字符值截断
- 自由格式数据
- 变量长度定义
- 非空格分隔符
- 缺失值处理