c语言求ax b =0,MIT线性代数总结笔记——Ax=0和Ax=b

求解Ax=0

消元法求解零空间

那么我们如何求解

math?formula=Ax%3D0呢?还是使用消元法,之前我们说使用消元法求解方程

math?formula=Ax%3Db时,我们对一种情况是无法处理的,那就是矩阵

math?formula=A不可逆的情况,之前对这种情况的解释是求出的解不唯一,这其实正好对应了现在我们所认识到的“空间”的概念。我们从最简单的零空间(

math?formula=b%3D0)的计算谈起。

例1:

math?formula=Ax%20%3D%20%5Cleft%5B%5Cbegin%7Bmatrix%7D%201%20%26%202%20%26%202%20%26%202%20%5C%5C%202%20%26%204%26%206%20%26%208%20%5C%5C%203%20%26%206%20%26%208%20%26%2010%20%5Cend%7Bmatrix%7D%5Cright%5D,求

math?formula=Ax%3D0中的

math?formula=x构成的零空间

先将方程写出,如下

math?formula=Ax%20%3D%20%5Cleft%5B%5Cbegin%7Bmatrix%7D%201%20%26%202%20%26%202%20%26%202%20%5C%5C%202%20%26%204%26%206%20%26%208%20%5C%5C%203%20%26%206%20%26%208%20%26%2010%20%5Cend%7Bmatrix%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Bmatrix%7D%20x_1%20%5C%5C%20x_2%20%5C%5C%20x_3%20%5C%5C%20x_4%20%5Cend%7Bmatrix%7D%5Cright%5D%20%3D%200

首先观察矩阵

math?formula=A我们发现,第三行是前两行的和,这意味着即使主元为

math?formula=0,我们也得继续消元下去。那么按部就班,有

math?formula=%5Cleft%5B%5Cbegin%7Bmatrix%7D%201%20%26%202%20%26%202%20%26%202%20%5C%5C%202%20%26%204%26%206%20%26%208%20%5C%5C%203%20%26%206%20%26%208%20%26%2010%20%5Cend%7Bmatrix%7D%5Cright%5D%20%5CRightarrow%20%5Cleft%5B%5Cbegin%7Bmatrix%7D%201%20%26%202%20%26%202%20%26%202%20%5C%5C%200%20%26%200%26%202%20%26%204%20%5C%5C%200%20%26%200%20%26%202%20%26%204%20%5Cend%7Bmatrix%7D%5Cright%5D%20%5CRightarrow%20%5Cleft%5B%5Cbegin%7Bmatrix%7D%201%20%26%202%20%26%202%20%26%202%20%5C%5C%200%20%26%200%26%202%20%26%204%20%5C%5C%200%20%26%200%20%26%200%20%26%200%20%5Cend%7Bmatrix%7D%5Cright%5D%20(%E9%98%B6%E6%A2%AF%E5%BD%A2%E5%BC%8F)%3D%20U

在消元的过程中,我们发现矩阵

math?formula=A的主元(Pivot)数量为

math?formula=2(

math?formula=1

math?formula=2),主元的个数称为矩阵的秩(Rank),因此在本题中矩阵

math?formula=A的秩为

math?formula=2

接下来就是回代求解了,由于消元得到的

math?formula=U不是一个严格的上三角矩阵,对角线上的

math?formula=0给我们造成了解不唯一的麻烦,所以这里我们先来声明几个概念

math?formula=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Cc%7Cc%7Cc%7D%201%20%26%202%20%26%202%20%26%202%20%5C%5C%200%20%26%200%26%202%20%26%204%20%5C%5C%200%20%26%200%20%26%200%20%26%200%20%5Cend%7Barray%7D%5Cright%5D中,列

math?formula=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Cc%7Cc%7Cc%7D%201%20%5C%5C%200%20%5C%5C%200%20%5Cend%7Barray%7D%5Cright%5D

math?formula=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Cc%7Cc%7Cc%7D%202%20%5C%5C%202%20%5C%5C%200%20%5Cend%7Barray%7D%5Cright%5D被称为主列(Pivot Columns,主元所在的列),其余两列

math?formula=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Cc%7Cc%7Cc%7D%202%20%5C%5C%200%20%5C%5C%200%20%5Cend%7Barray%7D%5Cright%5D

math?formula=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Cc%7Cc%7Cc%7D%202%20%5C%5C%204%20%5C%5C%200%20%5Cend%7Barray%7D%5Cright%5D被称为自由列(Free Columns),所谓自由列就是表示其对应的未知变量

math?formula=x_n(

math?formula=n表示自由列是第

math?formula=n列)可以被任意分配值。因为回代求解时,只有主列对应的未知数的解有确定值。因此矩阵

math?formula=A中的主变量(主元)为

math?formula=x_1

math?formula=x_3

math?formula=x_2

math?formula=x_4为自由变量。

(1)我们假设,令

math?formula=%5Cleft%5B%5Cbegin%7Bmatrix%7D%20x_2%20%5C%5C%20x_4%20%5Cend%7Bmatrix%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Bmatrix%7D%201%20%5C%5C%200%20%5Cend%7Bmatrix%7D%5Cright%5D,代入方程

math?formula=%5Cbegin%7Bcases%7D%20x_1%2B2x_2%2B2x_3%2B2x_4%3D0%20%5C%5C2x_3%2B4x_4%3D0%20%5Cend%7Bcases%7D

解得

math?formula=%5Cbegin%7Bcases%7D%20x_1%3D-2%20%5C%5Cx_3%3D%200%20%5Cend%7Bcases%7D

因此当

math?formula=%5Cleft%5B%5Cbegin%7Bmatrix%7D%20x_2%20%5C%5C%20x_4%20%5Cend%7Bmatrix%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Bmatrix%7D%201%20%5C%5C%200%20%5Cend%7Bmatrix%7D%5Cright%5D时,解向量为

math?formula=%5Cleft%5B%5Cbegin%7Bmatrix%7D%20-2%20%5C%5C%201%20%5C%5C%200%20%5C%5C%200%20%5Cend%7Bmatrix%7D%5Cright%5D,这只是零空间中的一个解,这个解表示

math?formula=-2倍的列

math?formula=1%24%24%2B%24%241倍的列

math?formula=2%24%24%3D0,如果想找出更多零向量中的解,我们只需要求它的倍数,所以

math?formula=x%3Dc%5Cleft%5B%5Cbegin%7Bmatrix%7D%20-2%20%5C%5C%201%20%5C%5C%200%20%5C%5C%200%20%5Cend%7Bmatrix%7D%5Cright%5D(c%E4%B8%BA%E4%BB%BB%E6%84%8F%E5%AE%9E%E6%95%B0),这是一条在四维空间中无限延伸的直线,但它不是整个零空间。

(2)我们再令

math?formula=%5Cleft%5B%5Cbegin%7Bmatrix%7D%20x_2%20%5C%5C%20x_4%20%5Cend%7Bmatrix%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Bmatrix%7D%200%20%5C%5C%201%20%5Cend%7Bmatrix%7D%5Cright%5D,代入方程

math?formula=%5Cbegin%7Bcases%7D%20x_1%2B2x_2%2B2x_3%2B2x_4%3D0%20%5C%5C2x_3%2B4x_4%3D0%20%5Cend%7Bcases%7D

解得

math?formula=%5Cbegin%7Bcases%7D%20x_1%3D2%20%5C%5Cx_3%3D-2%20%5Cend%7Bcases%7D

因此当

math?formula=%5Cleft%5B%5Cbegin%7Bmatrix%7D%20x_2%20%5C%5C%20x_4%20%5Cend%7Bmatrix%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Bmatrix%7D%200%20%5C%5C%201%20%5Cend%7Bmatrix%7D%5Cright%5D时,解向量为

math?formula=%5Cleft%5B%5Cbegin%7Bmatrix%7D%202%20%5C%5C%200%20%5C%5C%20-2%20%5C%5C%201%20%5Cend%7Bmatrix%7D%5Cright%5D,因此另一条在四维空间中的直线为

math?formula=x%3Dd%5Cleft%5B%5Cbegin%7Bmatrix%7D%202%20%5C%5C%200%20%5C%5C%20-2%20%5C%5C%201%20%5Cend%7Bmatrix%7D%5Cright%5D%EF%BC%88d%E4%B8%BA%E4%BB%BB%E6%84%8F%E5%AE%9E%E6%95%B0%EF%BC%89

那么还能为

math?formula=%5Cleft%5B%5Cbegin%7Bmatrix%7D%20x_2%20%5C%5C%20x_4%20%5Cend%7Bmatrix%7D%5Cright%5D赋其他值吗?很明显其他情况都可以被

math?formula=%5Cleft%5B%5Cbegin%7Bmatrix%7D%201%20%5C%5C%200%20%5Cend%7Bmatrix%7D%5Cright%5D

math?formula=%5Cleft%5B%5Cbegin%7Bmatrix%7D%200%20%5C%5C%201%20%5Cend%7Bmatrix%7D%5Cright%5D的线性组合所涵盖,所以这两个解向量足够代表空间的特征了,我们称这两个解向量为特解,其特殊之处在于我们给自由变量赋值为

math?formula=%5Cleft%5B%5Cbegin%7Bmatrix%7D%201%20%5C%5C%200%20%5Cend%7Bmatrix%7D%5Cright%5D

math?formula=%5Cleft%5B%5Cbegin%7Bmatrix%7D%200%20%5C%5C%201%20%5Cend%7Bmatrix%7D%5Cright%5D。通过特解的任意倍的线性组合,可以构造出整个零空间。因此便得出了矩阵

math?formula=A的零空间

math?formula=x%3Dc%5Cleft%5B%5Cbegin%7Bmatrix%7D%20-2%20%5C%5C%201%20%5C%5C%200%20%5C%5C%200%20%5Cend%7Bmatrix%7D%5Cright%5D%2Bd%5Cleft%5B%5Cbegin%7Bmatrix%7D%202%20%5C%5C%200%20%5C%5C%20-2%20%5C%5C%201%20%5Cend%7Bmatrix%7D%5Cright%5D(c%E5%92%8Cd%E4%B8%BA%E5%B8%B8%E6%95%B0)

算法总结

对于一个

math?formula=m%C3%97n的矩阵A,若其秩为

math?formula=r,那么意味着其主变量为

math?formula=r个,而自由变量为

math?formula=n-r个。也就是说,只有

math?formula=r列起作用。我们需要先对矩阵

math?formula=A进行消元,得到

math?formula=r个主元,由于有

math?formula=n个变量

math?formula=x,我们再将其中的

math?formula=n-r个自由变量依次赋值为

math?formula=%5Cleft%5B%5Cbegin%7Bmatrix%7D%201%20%5C%5C%200%20%5C%5C%20%5Cvdots%20%5C%5C%200%20%5Cend%7Bmatrix%7D%5Cright%5D%E3%80%81%5Cleft%5B%5Cbegin%7Bmatrix%7D%200%20%5C%5C%201%20%5C%5C%20%5Cvdots%20%5C%5C%200%20%5Cend%7Bmatrix%7D%5Cright%5D%E3%80%81%5Cleft%5B%5Cbegin%7Bmatrix%7D%200%20%5C%5C%200%20%5C%5C%20%5Cvdots%20%5C%5C%201%20%5Cend%7Bmatrix%7D%5Cright%5D。接着求解方程的特解,将特解的任意倍进行线性组合即可得到矩阵

math?formula=A的零空间。

简化阶梯形式

尽管上面的消元法看上去已经很完美了,但事实上仍有化简的余地,最后得到的

math?formula=U矩阵仍可以被进一步化简。我们以上文中的

math?formula=U%3D%5Cleft%5B%5Cbegin%7Bmatrix%7D%201%20%26%202%20%26%202%20%26%202%20%5C%5C%200%20%26%200%26%202%20%26%204%20%5C%5C%200%20%26%200%20%26%200%20%26%200%20%5Cend%7Bmatrix%7D%5Cright%5D为例,继续化简的目标是令对角线上的主元为1,并且通过列交换将主元放在一起,把自由列放在一起来构成新的矩阵,操作如下

math?formula=U%3D%5Cleft%5B%5Cbegin%7Bmatrix%7D%201%20%26%202%20%26%202%20%26%202%20%5C%5C%200%20%26%200%26%202%20%26%204%20%5C%5C%200%20%26%200%20%26%200%20%26%200%20%5Cend%7Bmatrix%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Bmatrix%7D%201%20%26%202%20%26%200%20%26%20-2%20%5C%5C%200%20%26%200%26%202%20%26%204%20%5C%5C%200%20%26%200%20%26%200%20%26%200%20%5Cend%7Bmatrix%7D%5Cright%5D(%E5%90%91%E4%B8%8A%E6%B6%88%E5%85%83)%20%3D%20%5Cleft%5B%5Cbegin%7Bmatrix%7D%201%20%26%202%20%26%200%20%26%20-2%20%5C%5C%200%20%26%200%26%201%20%26%202%20%5C%5C%200%20%26%200%20%26%200%20%26%200%20%5Cend%7Bmatrix%7D%5Cright%5D(%E6%8F%90%E7%AC%AC%E4%BA%8C%E8%A1%8C%E5%85%AC%E5%80%8D%E6%95%B0)%20%3D%20%5Cleft%5B%5Cbegin%7Bmatrix%7D%201%20%26%200%20%26%202%20%26%20-2%20%5C%5C%200%20%26%201%20%26%200%20%26%202%20%5C%5C%200%20%26%200%20%26%200%20%26%200%20%5Cend%7Bmatrix%7D%5Cright%5D(%E5%88%97%E4%BA%A4%E6%8D%A2)%20%3D%20R

也就是说最终我们能将上三角矩阵

math?formula=U化简成矩阵

math?formula=R,矩阵

math?formula=R的一般形式为

math?formula=R%20%3D%20%5Cleft%5B%5Cbegin%7Bmatrix%7D%20I%20%26%20F%20%5C%5C%200%20%26%200%5Cend%7Bmatrix%7D%5Cright%5D

其中,

math?formula=I表示主列,由于

math?formula=r个主列的主元被化简成了

math?formula=1,因此这部分变成了

math?formula=r维单位矩阵,

math?formula=F表示自由列,共有

math?formula=n-r个自由列。有了矩阵

math?formula=R我们可以改写

math?formula=Ax的表达形式

math?formula=Ax%20%3D%20Rx%20%3D%20%5Cleft%5B%5Cbegin%7Bmatrix%7D%20I%20%26%20F%20%5C%5C%200%20%26%200%5Cend%7Bmatrix%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Bmatrix%7D%20x_%7B%E4%B8%BB%E5%85%83%7D%20%5C%5C%20x_%7B%E8%87%AA%E7%94%B1%E5%8F%98%E9%87%8F%7D%20%5Cend%7Bmatrix%7D%5Cright%5D%20%3D%20RN%20%3D%200

这里的

math?formula=N为零空间矩阵,即各列向量由特解组成的矩阵

math?formula=N%20%3D%20%5Cleft%5B%5Cbegin%7Bmatrix%7D%20-F%20%5C%5C%20I%20%5Cend%7Bmatrix%7D%5Cright%5D

需要注意的是,这里的单位矩阵和矩阵

math?formula=R中的有所不同,这里的

math?formula=I

math?formula=n-r维的,是将

math?formula=n-r个自由变量分别赋值为

math?formula=0

math?formula=1得到的。将上文中的示例代入到

math?formula=R

math?formula=N,得到

math?formula=R%20%3D%20%5Cleft%5B%5Cbegin%7Bmatrix%7D%201%20%26%200%20%26%202%20%26%20-2%20%5C%5C%200%20%26%201%20%26%200%20%26%202%20%5C%5C%200%20%26%200%20%26%200%20%26%200%20%5Cend%7Bmatrix%7D%5Cright%5D%2C%5Cquad%20N%3D%5Cleft%5B%5Cbegin%7Bmatrix%7D%20-2%20%26%202%20%5C%5C%200%20%26%20-2%20%5C%5C%201%20%26%200%5C%5C%200%20%26%201%5Cend%7Bmatrix%7D%5Cright%5D

由于

math?formula=x_1

math?formula=x_3是主列,

math?formula=x_2

math?formula=x_4是自由列,因此只需交换零空间矩阵中的第2、3行即可得到特解

math?formula=%5Cleft%5B%5Cbegin%7Bmatrix%7D%20-2%20%5C%5C%201%20%5C%5C%200%20%5C%5C%200%20%5Cend%7Bmatrix%7D%5Cright%5D

math?formula=%5Cleft%5B%5Cbegin%7Bmatrix%7D%202%20%5C%5C%200%20%5C%5C%20-2%20%5C%5C%201%20%5Cend%7Bmatrix%7D%5Cright%5D。因此将矩阵

math?formula=U化简称矩阵

math?formula=R可以直接求解零空间。我们用下面一个例题来试验一下:

math?formula=A%20%3D%20%5Cleft%5B%5Cbegin%7Bmatrix%7D%201%20%26%202%20%26%203%20%5C%5C%202%20%26%204%20%26%206%20%5C%5C%202%20%26%206%20%26%208%20%5C%5C%202%20%26%208%20%26%2010%5Cend%7Bmatrix%7D%5Cright%5D,求解

math?formula=Ax%3D0

math?formula=x构成的零空间。

(1)将

math?formula=A消元为

math?formula=U

math?formula=A%20%3D%20%5Cleft%5B%5Cbegin%7Bmatrix%7D%201%20%26%202%20%26%203%20%5C%5C%202%20%26%204%20%26%206%20%5C%5C%202%20%26%206%20%26%208%20%5C%5C%202%20%26%208%20%26%2010%5Cend%7Bmatrix%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Bmatrix%7D%201%20%26%202%20%26%203%20%5C%5C%200%20%26%202%20%26%202%20%5C%5C%200%20%26%200%20%26%200%20%5C%5C%200%20%26%200%20%26%200%5Cend%7Bmatrix%7D%5Cright%5D%20%3D%20U%20(r%20%3D%202)

(2)将

math?formula=U化简为

math?formula=R

math?formula=U%20%3D%20%5Cleft%5B%5Cbegin%7Bmatrix%7D%201%20%26%202%20%26%203%20%5C%5C%200%20%26%202%20%26%202%20%5C%5C%200%20%26%200%20%26%200%20%5C%5C%200%20%26%200%20%26%200%5Cend%7Bmatrix%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Bmatrix%7D%201%20%26%200%20%26%201%20%5C%5C%200%20%26%201%20%26%201%20%5C%5C%200%20%26%200%20%26%200%20%5C%5C%200%20%26%200%20%26%200%5Cend%7Bmatrix%7D%5Cright%5D%20%3D%20R

(3)得到零空间矩阵

math?formula=N

math?formula=N%20%3D%20%5Cleft%5B%5Cbegin%7Bmatrix%7D%20-F%20%5C%5C%20I%20%5Cend%7Bmatrix%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Bmatrix%7D%20-1%20%5C%5C%20-1%20%5C%5C%201%20%5Cend%7Bmatrix%7D%5Cright%5D

(4)得到零空间:

math?formula=x%3Dc%5Cleft%5B%5Cbegin%7Bmatrix%7D%20-1%20%5C%5C%20-1%20%5C%5C%201%20%5Cend%7Bmatrix%7D%5Cright%5D(c%E4%B8%BA%E4%BB%BB%E6%84%8F%E5%AE%9E%E6%95%B0)

求解Ax=b

Ax=b的可解性

对于

math?formula=Ax%3Db我们知道这个方程不一定有解,在之前的章节中说明了

math?formula=Ax%3Db是否有解取决于

math?formula=b是否在

math?formula=A的列空间中,我们再通过一个例子来说明一下

例 求方程

math?formula=%5Cleft%5B%5Cbegin%7Bmatrix%7D%201%20%26%202%20%26%202%20%26%202%20%5C%5C%202%20%26%204%20%26%206%20%26%208%20%5C%5C%203%20%26%206%20%26%208%20%26%2010%20%5Cend%7Bmatrix%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Bmatrix%7D%20x_1%20%5C%5C%20x_2%20%5C%5C%20x_3%20%5C%5C%20x_4%20%5Cend%7Bmatrix%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Bmatrix%7D%20b_1%20%5C%5C%20b_2%20%5C%5C%20b_3%20%5Cend%7Bmatrix%7D%5Cright%5D的可解条件。

在这个方程中,观察矩阵A,发现矩阵中第三行为第一行和第二行的和。根据之前的Gauss-Jordan消元法,我们可以得到

math?formula=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7Cc%7D%201%20%26%202%20%26%202%20%26%202%20%26%20b_1%20%5C%5C%200%20%26%200%20%26%202%20%26%204%20%26%20b_2-b_1%20%5C%5C%200%20%26%200%20%26%200%20%26%200%20%26%20b_3-%20b_2-b_1%20%5Cend%7Barray%7D%5Cright%5D

代入方程,会发现最后一行

math?formula=0%20%3D%20b_3-b_2-b_1,这一行方程必须成立,因此这一行就是方程的可解条件。同时,它还反映了

math?formula=b向量的第三个分量是前两个分量之和,这也与矩阵

math?formula=A的特点一致,这也印证了

math?formula=Ax%3Db是否有解取决于

math?formula=b是否在

math?formula=A的列空间中。

结合之前的章节总结出

math?formula=Ax%3Db有解条件:

列空间角度:当且仅当

math?formula=b属于

math?formula=A的列空间时成立

线性组合角度:当且仅当

math?formula=b

math?formula=A各列的线性组合时成立

矩阵变换角度:如果

math?formula=A各行线性组合后得到零行,那么

math?formula=b取相同运算方式也必将得到

math?formula=0

求解Ax=b

接下来介绍通解和特解,通解就是满足方程所有的解,将“无穷解”用一种形式表达出来,对于

math?formula=Ax%3Db这个方程

math?formula=%E9%80%9A%E8%A7%A3%3D%E7%9F%A9%E9%98%B5%E9%9B%B6%E7%A9%BA%E9%97%B4%E5%90%91%E9%87%8F%2B%E7%9F%A9%E9%98%B5%E7%89%B9%E8%A7%A3

因为矩阵零空间向量代入方程最后结果等于

math?formula=0,所以它不会影响等式,而是把方程的解向量扩展到一个类似子空间上,使我们求出的解更具有普遍意义,而求解零空间我们在上文也已经介绍,下面我们只需要关注如何求特解即可。在之前求解

math?formula=Ax%3D0方程的特解时,我们分别将自由变量赋值为

math?formula=0

math?formula=1,得到

math?formula=x%3Dc%5Cleft%5B%5Cbegin%7Bmatrix%7D%20-2%20%5C%5C%201%20%5C%5C%200%20%5C%5C%200%20%5Cend%7Bmatrix%7D%5Cright%5D%2Bd%5Cleft%5B%5Cbegin%7Bmatrix%7D%202%20%5C%5C%200%20%5C%5C%20-2%20%5C%5C%201%20%5Cend%7Bmatrix%7D%5Cright%5D(c%E5%92%8Cd%E4%B8%BA%E4%BB%BB%E6%84%8F%E5%AE%9E%E6%95%B0)

观察这个表达式会发现,只要将系数

math?formula=c

math?formula=d定为

math?formula=0就可以得到零空间中的零向量,而且我们不能在求解

math?formula=Ax%3D0时将自由变元都赋为

math?formula=0。但是在

math?formula=Ax%3Db中,只要

math?formula=b不是

math?formula=0,我们就可以将自由变元全部赋为

math?formula=0,使用此方法即可得到特解。

接下来补充上述例题中方程的条件

math?formula=%5Cleft%5B%5Cbegin%7Bmatrix%7D%201%20%26%202%20%26%202%20%26%202%20%5C%5C%202%20%26%204%20%26%206%20%26%208%20%5C%5C%203%20%26%206%20%26%208%20%26%2010%20%5Cend%7Bmatrix%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Bmatrix%7D%20x_1%20%5C%5C%20x_2%20%5C%5C%20x_3%20%5C%5C%20x_4%20%5Cend%7Bmatrix%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Bmatrix%7D%201%20%5C%5C%205%20%5C%5C%206%20%5Cend%7Bmatrix%7D%5Cright%5D

Gauss-Jordan消元后得到

math?formula=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7Cc%7D%201%20%26%202%20%26%202%20%26%202%20%26%201%20%5C%5C%200%20%26%200%20%26%202%20%26%204%20%26%204%20%5C%5C%200%20%26%200%20%26%200%20%26%200%20%26%200%20%5Cend%7Barray%7D%5Cright%5D

math?formula=%5Cleft%5B%5Cbegin%7Bmatrix%7D%20x_2%20%5C%5C%20x_4%20%5Cend%7Bmatrix%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Bmatrix%7D%200%20%5C%5C%200%20%5Cend%7Bmatrix%7D%5Cright%5D回代方程得到

math?formula=%5Cbegin%7Bcases%7D%20x_1%2B2x_3%3D1%20%5C%5C2x_3%3D3%20%5Cend%7Bcases%7D

解得特解为

math?formula=%5Cleft%5B%5Cbegin%7Bmatrix%7D%20-2%20%5C%5C%200%20%5C%5C%20%5Cfrac%7B3%7D%7B2%7D%20%5C%5C%200%20%5Cend%7Bmatrix%7D%5Cright%5D

利用上一节的知识我们很容易求出

math?formula=A的零空间为

math?formula=c_1%5Cleft%5B%5Cbegin%7Bmatrix%7D%20-2%20%5C%5C%201%20%5C%5C%200%20%5C%5C%200%20%5Cend%7Bmatrix%7D%5Cright%5D%2Bc_2%5Cleft%5B%5Cbegin%7Bmatrix%7D%202%20%5C%5C%200%20%5C%5C%20-2%20%5C%5C%201%20%5Cend%7Bmatrix%7D%5Cright%5D(c_1%E5%92%8Cc_2%E4%B8%BA%E4%BB%BB%E6%84%8F%E5%AE%9E%E6%95%B0)

因此

math?formula=Ax%3Db的解为

math?formula=%E7%89%B9%E8%A7%A3%2B%E9%9B%B6%E7%A9%BA%E9%97%B4%E4%BB%BB%E6%84%8F%E5%90%91%E9%87%8F%3D%5Cleft%5B%5Cbegin%7Bmatrix%7D%20-2%20%5C%5C%200%20%5C%5C%20%5Cfrac%7B3%7D%7B2%7D%20%5C%5C%200%20%5Cend%7Bmatrix%7D%5Cright%5D%20%2B%20c_1%5Cleft%5B%5Cbegin%7Bmatrix%7D%20-2%20%5C%5C%201%20%5C%5C%200%20%5C%5C%200%20%5Cend%7Bmatrix%7D%5Cright%5D%2Bc_2%5Cleft%5B%5Cbegin%7Bmatrix%7D%202%20%5C%5C%200%20%5C%5C%20-2%20%5C%5C%201%20%5Cend%7Bmatrix%7D%5Cright%5D(c_1%E5%92%8Cc_2%E4%B8%BA%E4%BB%BB%E6%84%8F%E5%AE%9E%E6%95%B0)

这个解集在几何角度的解释是

math?formula=R%5E4上的一个不过原点的二维平面,显然这个解集无法构成一个向量空间,因为解集中不包含零向量。

矩阵的秩与解的关系

我们在消元求

math?formula=Ax%3Db的过程中会发现,矩阵的秩对最后解的形式有着重要的影响,下面我们来总结一下其中的规律。

列满秩

对于

math?formula=m%C3%97n的矩阵

math?formula=A,列满秩时,意味着没有自由列,

math?formula=r%3Dn%3Cm,此时零空间中只有零向量(不需要求零空间),

math?formula=Ax%3Db的解要么有解且唯一(特解

math?formula=x_p),要么无解。例如

math?formula=A%20%3D%20%5Cleft%5B%5Cbegin%7Bmatrix%7D%201%20%26%203%20%5C%5C%202%20%26%201%20%5C%5C%206%20%26%201%20%5C%5C%205%20%26%201%20%5Cend%7Bmatrix%7D%5Cright%5D%20%5Cquad%20r%3D2%3Dn%3Cm

消元,由于两列线性无关,因此只有两个主元,逐行减去第一行的若干倍,行三和行四清零,得到第二个主元,然后各行都减去第二个主元的若干倍,最终第二个主元化为

math?formula=1的得到矩阵

math?formula=R

math?formula=A%20%3D%20%5Cleft%5B%5Cbegin%7Bmatrix%7D%201%20%26%203%20%5C%5C%202%20%26%201%20%5C%5C%206%20%26%201%20%5C%5C%205%20%26%201%20%5Cend%7Bmatrix%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Bmatrix%7D%201%20%26%200%20%5C%5C%200%20%26%201%20%5C%5C%200%20%26%200%20%5C%5C%200%20%26%200%20%5Cend%7Bmatrix%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Bmatrix%7D%20I%20%5C%5C%200%20%5Cend%7Bmatrix%7D%5Cright%5D%3DR

行满秩

对于

math?formula=m%C3%97n的矩阵

math?formula=A,行满秩时,意味着有

math?formula=m个主元(每一行各一个),

math?formula=r%20%3D%20m%3Cn,此时自由变元有

math?formula=n-r个,必然有解而且有无穷多解,例如

math?formula=A%20%3D%20%5Cleft%5B%5Cbegin%7Bmatrix%7D%201%20%26%202%20%26%206%20%26%205%20%5C%5C%203%20%26%201%20%26%201%20%26%201%20%5Cend%7Bmatrix%7D%5Cright%5D%20%5Cquad%20r%3D2%3Dm%3Cn

最后我们会消元得到

math?formula=R%3D%5Cleft%5B%5Cbegin%7Bmatrix%7D%20I%20%26%20F%20%5Cend%7Bmatrix%7D%5Cright%5D

行列满秩

对于

math?formula=m%C3%97n的矩阵

math?formula=A,行列满秩时,意味着矩阵可逆,

math?formula=r%20%3D%20m%20%3D%20n,此时自由变元有

math?formula=0个,经过消元,最终矩阵可化为单位矩阵

math?formula=I,即一个全是主元的方程组,最终只能有一个唯一解。例如

math?formula=A%20%3D%20%5Cleft%5B%5Cbegin%7Bmatrix%7D%201%20%26%202%20%5C%5C%203%20%26%201%5Cend%7Bmatrix%7D%5Cright%5D%20%5Cquad%20r%3D2%3Dm%3Dn

最后消元得到

math?formula=R%3DI

不满秩

对于

math?formula=m%C3%97n的矩阵

math?formula=A,不满秩时,意味着通过消元最终会得到

math?formula=R%20%3D%20%5Cleft%5B%5Cbegin%7Bmatrix%7D%20I%20%26%20F%20%5C%5C%200%20%26%200%5Cend%7Bmatrix%7D%5Cright%5D,因此方程的解要么无解,要么无穷多解(特解+零空间所有向量)

小结

综上所述,会发现自由变量总为

math?formula=n-r个,所以通过判断自由变元的个数可以初步判断

math?formula=Ax%3Db的解的结构:如果没有自由变元,意味着方程的解唯一或者无解;如果存在自由变元,意味着方程的解有无穷多解或者无解。也就是说,自由变元是否存在决定了方程的解是否唯一。另一点是,可以通过观察消元后矩阵

math?formula=A是否存在

math?formula=0行来进一步判断方程是否有解:如果矩阵

math?formula=A中没有零行时,意味着方程一定有解;如果存在零行,则需要考虑方程是否满足可解条件。

除此之外,我们还发现了零空间实际上就是用来判断矩阵

math?formula=A的各列向量是否是线性无关的,如果各列向量是线性无关的,那么零空间中只有零向量,如果各列向量是线性相关的,那么零空间中除了零向量还有其他向量。因此零空间反映的就是

math?formula=A各列向量的线性组合。

关于Ax=b的另一种解释

当我们求解方程时,例如

math?formula=%5Cbegin%7Bcases%7D%202x-y%3D0%20%5C%5C%20-x%2B2y%3D3%20%5Cend%7Bcases%7D

矩阵表达如下

math?formula=%5Cleft%5B%5Cbegin%7Bmatrix%7D%202%20%26%20-1%20%5C%5C%20-1%20%26%202%5Cend%7Bmatrix%7D%5Cright%5D%5Cleft%5B%5Cbegin%7Bmatrix%7D%20x%20%5C%5C%20y%20%5Cend%7Bmatrix%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Bmatrix%7D%200%20%5C%5C%203%20%5Cend%7Bmatrix%7D%5Cright%5D

除了使用消元法或判断矩阵是否满秩以外,我们还可以从列空间的角度来看这个方程,改写一些这个矩阵表达如下

math?formula=x%5Cleft%5B%5Cbegin%7Bmatrix%7D%202%20%5C%5C%20-1%20%5Cend%7Bmatrix%7D%5Cright%5D%20%2B%20y%20%5Cleft%5B%5Cbegin%7Bmatrix%7D%20-1%20%5C%5C%202%20%5Cend%7Bmatrix%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Bmatrix%7D%200%20%5C%5C%203%20%5Cend%7Bmatrix%7D%5Cright%5D

那么我们判断这个方程是否有解的条件实际上就是判断向量

math?formula=%5Cleft%5B%5Cbegin%7Bmatrix%7D%200%20%5C%5C%203%20%5Cend%7Bmatrix%7D%5Cright%5D是否在以向量

math?formula=%5Cleft%5B%5Cbegin%7Bmatrix%7D%202%20%5C%5C%20-1%20%5Cend%7Bmatrix%7D%5Cright%5D和向量

math?formula=%5Cleft%5B%5Cbegin%7Bmatrix%7D%20-1%20%5C%5C%202%20%5Cend%7Bmatrix%7D%5Cright%5D构成的列空间中,换句话说,向量

math?formula=%5Cleft%5B%5Cbegin%7Bmatrix%7D%200%20%5C%5C%203%20%5Cend%7Bmatrix%7D%5Cright%5D是否可以表达成向量

math?formula=%5Cleft%5B%5Cbegin%7Bmatrix%7D%202%20%5C%5C%20-1%20%5Cend%7Bmatrix%7D%5Cright%5D和向量

math?formula=%5Cleft%5B%5Cbegin%7Bmatrix%7D%20-1%20%5C%5C%202%20%5Cend%7Bmatrix%7D%5Cright%5D的线性组合。由于向量

math?formula=%5Cleft%5B%5Cbegin%7Bmatrix%7D%202%20%5C%5C%20-1%20%5Cend%7Bmatrix%7D%5Cright%5D和向量

math?formula=%5Cleft%5B%5Cbegin%7Bmatrix%7D%20-1%20%5C%5C%202%20%5Cend%7Bmatrix%7D%5Cright%5D是线性相关的,因此可以张成一个二维平面,而向量

math?formula=%5Cleft%5B%5Cbegin%7Bmatrix%7D%200%20%5C%5C%203%20%5Cend%7Bmatrix%7D%5Cright%5D只是其中的一个二维向量,因此可以推断出方程一定有解。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值